当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 直线L:x4+y3=1与椭圆E:x216+y29=1相交于A,B两点,该椭圆上存在点P,使得△PAB的面积等于3,则这样的点P共有(  )A.1个B.2个C.3...
题目
题型:不详难度:来源:
直线L:
x
4
+
y
3
=1与椭圆E:
x2
16
+
y2
9
=1相交于A,B两点,该椭圆上存在点P,使得△PAB的面积等于3,则这样的点P共有(  )
A.1个B.2个C.3个D.4个
答案
设P1(4cosα,3sinα)(0<α<
π
2
),即点P1在第一象限的椭圆上,考虑四边形P1AOB面积S,
S=S△OAP1+S△OBP1=
1
2
×4(3sinα)+
1
2
×3(4cosα)=6(sinα+cosα)=6


2
sin(α+
π
4
),∴Smax=6


2

∵S△OAB=
1
2
×4×3=6为定值,
∴S△P1AB的最大值为6


2
-6.
∵6


2
-6<3,
∴点P不可能在直线AB的上方,显然在直线AB的下方有两个点P,
故选B.
核心考点
试题【直线L:x4+y3=1与椭圆E:x216+y29=1相交于A,B两点,该椭圆上存在点P,使得△PAB的面积等于3,则这样的点P共有(  )A.1个B.2个C.3】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
在平面直角坐标系xOy中,已知圆心在第二象限,半径为2


2
的圆C与直线y=x相切于坐标原点O.椭圆
x2
a2
+
y2
9
=1与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)试探求C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,双曲线
x2
a2
-
y2
b2
=1
两渐近线为l1、l2,过椭圆C的右焦点F作直线l,使l⊥l1,又设l与l2交于点P,l与C两交点自上而下依次为A、B;
(1)当l1与l2夹角为
π
3
,双曲线焦距为4时,求椭圆C的方程及其离心率;
(2)若


FA


AP
,求λ的最小值.
题型:不详难度:| 查看答案
已知椭圆C的中心在原点,焦点在x轴上.若椭圆上的点A(1,


3
2
)
到焦点F1、F2的距离之和等于4.
(1)写出椭圆C的方程和焦点坐标.
(2)过点Q(1,0)的直线与椭圆交于两点M、N,当△OMN的面积取得最大值时,求直线MN的方程.
题型:不详难度:| 查看答案
设抛物线y2=4x被直线y=2x+b所截得的弦长为3


5
,则b=______.
题型:不详难度:| 查看答案
已知点D(0,-2),过点D作抛物线C1:x2=2py(p>0)的切线l,切点A在第二象限,如图
(Ⅰ)求切点A的纵坐标;
(Ⅱ)若离心率为


3
2
的椭圆
x2
a2
+
y2
b2
=1(a>b>0)
恰好经过切点A,设切线l交椭圆的另一点为B,记切线l,OA,OB的斜率分别为k,k1,k2,若k1+2k2=4k,求椭圆方程.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.