当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 若点O和点F(﹣2, 0)分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为A.B.C.D....
题目
题型:不详难度:来源:
若点O和点F(﹣2, 0)分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为
A.B.
C.D.

答案
B
解析

试题分析:根据题意,设点P(m,n),则可知 ,同时满足=,由于,则可知c=2,,那么结合二次函数的性质可知,数量积的范围是,故选B.
点评:解决的关键是根据通过向量的坐标表示来得到数量积的表达式,属于基础题。
核心考点
试题【若点O和点F(﹣2, 0)分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为A.B.C.D.】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
如图,已知直线l:x=my+1过椭圆的右焦点F,抛物线:的焦点为椭圆C的上顶点,且直线l交椭圆C于A、B两点,点A、F、B在直线g:x=4上的射影依次为点D、K、E.(1)椭圆C的方程;(2)直线l交y轴于点M,且,当m变化时,探求λ12的值是否为定值?若是,求出λ12的值,否则,说明理由;(3)接AE、BD,试证明当m变化时,直线AE与BD相交于定点
题型:不详难度:| 查看答案
已知双曲线的左右焦点为,P为双曲线右支上
的任意一点,若的最小值为8a,则双曲线的离心率的取值范围是        
题型:不详难度:| 查看答案
设点P是曲线C:上的动点,点P到点(0,1)的距离和它到
焦点F的距离之和的最小值为
(1)求曲线C的方程
(2)若点P的横坐标为1,过P作斜率为的直线交C与另一点Q,交x轴于点M,
过点Q且与PQ垂直的直线与C交于另一点N,问是否存在实数k,使得直线MN与曲线C
相切?若存在,求出k的值,若不存在,说明理由。
题型:不详难度:| 查看答案
抛物线的焦点为,点在此抛物线上,且,弦的中点在该抛物线准线上的射影为,则的最大值为(    )
A.B.C.1D.

题型:不详难度:| 查看答案
已知椭圆的长轴长是短轴长的两倍,焦距为.
(1)求椭圆的标准方程;
(2)设不过原点的直线与椭圆交于两点,且直线的斜率依次成等比数列,求△面积的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.