当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 已知为椭圆的两个焦点,若椭圆上一点满足,则椭圆的离心率(     )A.B.C.D....
题目
题型:不详难度:来源:
已知为椭圆的两个焦点,若椭圆上一点满足,则椭圆的离心率(     )
A.B.C.D.

答案
C
解析

试题分析:根据椭圆的定义,确定长轴长,焦距长,即可求得椭圆的离心率.解:由题意,2a=4,2c=2
∴a=2,c=1,e= ,因此可知其离心率为,选C.
点评:本题考查椭圆的几何性质,解题的关键是确定长轴长,焦距长,属于基础题
核心考点
试题【已知为椭圆的两个焦点,若椭圆上一点满足,则椭圆的离心率(     )A.B.C.D.】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
己知椭圆的离心率为是椭圆的左右顶点,是椭圆的上下顶点,四边形的面积为.
(1)求椭圆的方程;
(2)圆两点.当圆心与原点的距离最小时,求圆的方程.
题型:不详难度:| 查看答案
已知椭圆与双曲线有相同的焦点,若cam的等比中项,n2是2m2c2的等差中项,则椭圆的离心率为
A.B.C.D.

题型:不详难度:| 查看答案
设椭圆C的两个焦点为F1F2,点B1为其短轴的一个端点,满足

(1)求椭圆C的方程;
(2)过点M 做两条互相垂直的直线l1l2l1与椭圆交于点ABl2与椭圆交于点CD,求的最小值。
题型:不详难度:| 查看答案
在直角坐标系xOy中,已知点P,曲线C的参数方程为φ为参数)。以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为
(1)判断点P与直线l的位置关系,说明理由;
(2)设直线l与直线C的两个交点为AB,求的值。
题型:不详难度:| 查看答案
已知椭圆C的方程为左、右焦点分别为F1、F2,焦距为4,点M是椭圆C上一点,满足
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点P(0,2)分别作直线PA,PB交椭圆C于A,B两点,设直线PA,PB的斜率分别为k1,k2,求证:直线AB过定点,并求出直线AB的斜率k的取值范围。
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.