当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 已知曲线C:y=2x2,点A(0,-2)及点B(3,a),从点A观察点B,要实现不被曲线C挡住,则实数a的取值范围是(  )A.(4,+∞)B.(-∞,4)C....
题目
题型:不详难度:来源:
已知曲线Cy=2x2,点A(0,-2)及点B(3,a),从点A观察点B,要实现不被曲线C挡住,则实数a的取值范围是(  )
A.(4,+∞)B.(-∞,4)
C.(10,+∞)D.(-∞,10)

答案
D
解析

试题分析:先看视线最高时为抛物线切线,而且为右上方向,设出切线的方程与抛物线方程联立消去y,根据判别式等于0求得k的值,进而求得切线的方程,把x=3代入即可求得y的值,B点只要在此切线下面都满足题意,进而求得a的范围.解:视线最高时为抛物线切线,而且为右上方向,设切线y=kx-2(k>0),与抛物线方程联立得2x2-kx+2=0,△=k2-16=0,k=4(负的舍去),∴切线为y=4x-2,取x=3得y=10,B点只要在此切线下面都满足题意∴a<10故选D.
点评:本题主要考查了抛物线的简单性质,直线与抛物线的位置关系.考查了学生创造性思维能力和基本的分析推理能力
核心考点
试题【已知曲线C:y=2x2,点A(0,-2)及点B(3,a),从点A观察点B,要实现不被曲线C挡住,则实数a的取值范围是(  )A.(4,+∞)B.(-∞,4)C.】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
抛物线的焦点F是椭圆的一个焦点,且它们的交点M到F的距离为,则椭圆的离心率为
A.B.C.D.

题型:不详难度:| 查看答案
分别是椭圆的左,右焦点。
(Ⅰ)若是第一象限内该椭圆上的一点,且,求点的坐标。
(Ⅱ)设过定点的直线与椭圆交于不同的两点,且为锐角(其中O为坐标原点),求直线的斜率的取值范围。
题型:不详难度:| 查看答案
若点O和点F分别为双曲线 的中心和左焦点,点P为双曲线右支上的任意一点,则的最小值为(  )
A.-6B.-2C.0D.10

题型:不详难度:| 查看答案
已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为,且||=2,
点(1,)在该椭圆上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过的直线与椭圆C相交于A,B两点,若AB的面积为,求以为圆心且与直线相切是圆的方程.
题型:不详难度:| 查看答案
已知拋物线x2=4py(p>0)与双曲线有相同的焦点F,点A 是两曲线的一个交点,且AF丄y轴,则双曲线的离心率为
A,    B.    C.    D.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.