当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > (本小题满分13分)已知椭圆C的中心在坐标原点,离心率,且其中一个焦点与抛物线的焦点重合.(Ⅰ)求椭圆C的方程;(Ⅱ)过点的动直线l交椭圆C于A、B两点,试问:...
题目
题型:不详难度:来源:
(本小题满分13分)已知椭圆C的中心在坐标原点,离心率,且其中一个焦点与抛物线的焦点重合.(Ⅰ)求椭圆C的方程;(Ⅱ)过点的动直线l交椭圆CA、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过点T,若存在,求出点T的坐标;若不存在,请说明理由.
答案
解:(Ⅰ)设椭圆的方程为,离心率,抛物线的焦点为,所以,椭圆C的方程是x2+="1." …………(4分)
(Ⅱ)若直线lx轴重合,则以AB为直径的圆是x2+y2=1,若直线l垂直于x轴,则以AB为直径的圆是(x+)2+y2=
解得即两圆相切于点(1,0).
因此所求的点T如果存在,只能是(1,0).…………(6分)
事实上,点T(1,0)就是所求的点.证明如下:
当直线l垂直于x轴时,以AB为直径的圆过点T(1,0).
若直线l不垂直于x轴,可设直线ly=k(x+).由即(k2+2)x2+k2x+k2-2=0.
记点A(x1,y1),B(x2,y2),则…………(9分)
又因为=(x1-1, y1), =(x2-1, y2),
·=(x1-1)(x2-1)+y1y2=(x1-1)(x2-1)+k2(x1+)(x2+)
=(k2+1)x1x2+(k2-1)(x1+x2)+k2+1 =(k2+1) +(k2-1) + +1=0,
所以TATB,即以AB为直径的圆恒过点T(1,0).
所以在坐标平面上存在一个定点T(1,0)满足条件. …………(13分)
解析

核心考点
试题【(本小题满分13分)已知椭圆C的中心在坐标原点,离心率,且其中一个焦点与抛物线的焦点重合.(Ⅰ)求椭圆C的方程;(Ⅱ)过点的动直线l交椭圆C于A、B两点,试问:】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
设椭圆的右焦点为,离心率为,则此椭圆的方程为___________
题型:不详难度:| 查看答案
P是椭圆上的点,F1、F2是两个焦点,则|PF1|·|PF2|的最大值与最小值之差是_____
题型:不详难度:| 查看答案
如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.

(1)求该弦椭圆的方程;
(2)求弦AC中点的横坐标;
(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.
题型:不详难度:| 查看答案
如果椭圆上一点P到焦点的距离等于6,那么点P到另一个焦点的距离是            
题型:不详难度:| 查看答案
椭圆的焦点是F1,F2,如果椭圆上一点P满足PF1⊥PF2下面结论正确的是(   )
A.P点有两个B.P点有四个
C.P点不一定存在D.P点一定不存在

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.