当前位置:高中试题 > 数学试题 > 椭圆 > 如图所示,已知圆C:(x+1)2+y2=8,定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足,=0,点N的轨迹为曲线E.(1)求曲线E的方程...
题目
题型:期末题难度:来源:
如图所示,已知圆C:(x+1)2+y2=8,定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足=0,点N的轨迹为曲线E.
(1)求曲线E的方程;
(2)过点S(0,)且斜率为k的动直线l交曲线E于A、B两点,在y轴上是否存在定点G,满足使四边形NAPB为矩形?若存在,求出G的坐标和四边形NAPB面积的最大值;若不存在,说明理由.
答案
解:(1)∵=0,
∴NP为AM的垂直平分线,
∴|NA|=|NM|.
又∵|CN|+|NM|=2
∴|CN|+|AN|=2>2
∴动点N的轨迹是以点C(﹣1,0),A(1,0)为焦点的椭圆.
且椭圆长轴长为2a=2,焦距2c=2
∴a=,c=1,
∴b2=1
∴曲线E的方程为
(2)动直线l的方程为:y=kx﹣与椭圆方程联立,
消元可得(2k2+1)x2kx﹣=0
设A(x1,y1),B(x2,y2),

假设在y上存在定点G(0,m),满足题设,
=(x1,y1﹣m),=(x2,y2﹣m),
=x1x2+(y1﹣m)(y2﹣m)=
由假设得对于任意的k∈R,=0恒成立,
∴m2﹣1=0且9m2+m﹣15﹣0,解得m=1.
因此,在y轴上存在定点G,使得以AB为直径的圆恒过这个点,点G的坐标为(0,1)
这时,点G到AB的距离d==
SGAPB=|AB|d==
设2k2+1=t,则
得t∈[1,+∞),
所以SGAPB=
当且仅当时,上式等号成立.
因此,四边形NAPB面积的最大值是
核心考点
试题【如图所示,已知圆C:(x+1)2+y2=8,定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足,=0,点N的轨迹为曲线E.(1)求曲线E的方程】;主要考察你对椭圆等知识点的理解。[详细]
举一反三
如图,椭圆长轴端点为A,B,O为椭圆中心,F为椭圆的右焦点,且
(1)求椭圆的标准方程;
(2)记椭圆的上顶点为M,直线l交椭圆于P,Q两点,问:是否存在直线l,使点F恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.
题型:期末题难度:| 查看答案
已知椭圆,椭圆C2以C1的长轴为短轴,且与C1有相同的离心率。
(1)求椭圆C2的方程;
(2)设O为坐标原点,点A,B分别在椭圆C1和C2上,,求直线AB的方程。
题型:高考真题难度:| 查看答案
已知椭圆的左顶点是A,过焦点F(c,0)(c>0,为椭圆的半焦距)作倾斜角为θ的直线(非x轴)交椭圆于M,N两点,直线AM,AN分别交直线(称为椭圆的右准线)于P,Q两点.
(1)若当θ=30°时有,求椭圆的离心率;
(2)若离心率e=,求证:为定值.
题型:月考题难度:| 查看答案
已知中心在坐标原点,焦点在坐标轴上的椭圆G与x轴交于A、C两点,与y轴交于B、D两点,且A点的坐标为(﹣2,0),四边形ABCD的面积为4.
(1)求椭圆G的方程;
(2)过x轴上一点M(1,0)作一条不垂直于y轴的直线l,交椭圆G于E、F点,是否存在直线l,使得△AEF的面积为,说明理由
题型:月考题难度:| 查看答案
已知椭圆方程为(a>b>0),长轴两端点A、B,短轴上端顶点为M,点O为坐标原点,F为椭圆的右焦点,且=1,|OF|=1.
(1)求椭圆方程;
(2)直线l交椭圆于P、Q两点,问:是否存在直线l,使点F恰为△PQM的垂心?若存在,求出直线l的方程,若不存在,请说明理由.
题型:月考题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.