当前位置:高中试题 > 数学试题 > 椭圆 > 已知椭圆C:的短轴长等于焦距,椭圆C上的点到右焦点F的最短距离为。(Ⅰ)求椭圆C的方程;(Ⅱ)过点E(2,0)且斜率为k(k>0)的直线l与C交于M、N两...
题目
题型:河北省模拟题难度:来源:
已知椭圆C:的短轴长等于焦距,椭圆C上的点到右焦点F的最短距离为
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点E(2,0)且斜率为k(k>0)的直线l与C交于M、N两点,P是点M关于x轴的对称点,证明:N、F、P三点共线。
答案
解:(I)由题可知:
解得
∴b=1
∴椭圆C的方程为C:
(II)设直线l:

所以





∴N、F、P三点共线。
核心考点
试题【已知椭圆C:的短轴长等于焦距,椭圆C上的点到右焦点F的最短距离为。(Ⅰ)求椭圆C的方程;(Ⅱ)过点E(2,0)且斜率为k(k>0)的直线l与C交于M、N两】;主要考察你对椭圆等知识点的理解。[详细]
举一反三
以F1(0 ,-1),F2(0 ,1)为焦点的椭圆C过点P(,1)。
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点S(,0)的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,请说明理由。
题型:浙江省模拟题难度:| 查看答案
设椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:

(1)求C1,C2的标准方程;
(2)设直线l与椭圆C1交于不同两点M,N,且,请问是否存在这样的直线l过抛物线C2的焦点F?若存在,求出直线L的方程;若不存在,说明理由.
题型:模拟题难度:| 查看答案
如图,在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的离心率为,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切,
(1)求椭圆C的方程;
(2)已知点P(0,1),Q(0,2),设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上。
题型:安徽省模拟题难度:| 查看答案
已知椭圆C :的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线x-y+2=0相切,A,B分别是椭圆的左右两个顶点,P为椭圆C上的动点,
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若P与A,B均不重合,设直线PA与PB的斜率分别为k1,k2,证明:k1·k2为定值;
(Ⅲ)M为过P且垂直于x轴的直线上的点,若,求点M的轨迹方程,并说明轨迹是什么曲线。
题型:陕西省模拟题难度:| 查看答案
已知椭圆C :的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线x-y+2=0相切,A,B分别是椭圆的左右两个顶点,P为椭圆C上的动点,
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若P与A,B均不重合,设直线PA与PB的斜率分别为k1,k2,证明:k1·k2为定值;
(Ⅲ)M为过P且垂直于x轴的直线上的点,若,求点M的轨迹方程。
题型:陕西省模拟题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.