当前位置:高中试题 > 数学试题 > 椭圆 > 已知椭圆的离心率.直线x=t(t>0)与曲线E交于不同的两点M,N,以线段MN为直径作圆C,圆心为C.(1)求椭圆E的方程;(2)若圆C与y轴相交于不同的两点A...
题目
题型:期末题难度:来源:
已知椭圆的离心率.直线x=t(t>0)与曲线E交于不同的两点M,N,以线段MN为直径作圆C,圆心为C.
(1)求椭圆E的方程;
(2)若圆C与y轴相交于不同的两点A,B,且△ABC的面积为,求圆C的标准方程.
答案
解:(1)∵椭圆的离心率
.解得a=2.
∴椭圆E的方程为
(2)依题意,圆心为C(t,0),(0<t<2).

∴圆C的半径为
∵圆C与y轴相交于不同的两点A,B,且圆心C到y轴的距离d=t,
,即
∴弦长
∴△ABC的面积

∴圆C的标准方程为
核心考点
试题【已知椭圆的离心率.直线x=t(t>0)与曲线E交于不同的两点M,N,以线段MN为直径作圆C,圆心为C.(1)求椭圆E的方程;(2)若圆C与y轴相交于不同的两点A】;主要考察你对椭圆等知识点的理解。[详细]
举一反三
已知可行域的外接圆C与x轴交于点A1、A2,椭圆C1以线段A1A2为长轴,离心率
(1)求圆C及椭圆C1的方程;
(2)设椭圆C1的右焦点为F,点P为圆C上异于A1、A2的动点,过原点O作直线PF的垂线交直线于点Q,判断直线PQ与圆C的位置关系,并给出证明.
题型:期末题难度:| 查看答案
已知椭圆E:(a>b>0)过点P(3,1),其左、右焦点分别为,且
(1)求椭圆E的方程;
(2)若M,N是直线x=5上的两个动点,且M⊥N,则以MN为直径的圆C是否过定点?请说明理由.
题型:安徽省月考题难度:| 查看答案
已知椭圆b2x2+a2y2=a2b2(a>b>0)与圆x2+y2=4c2只有两个公共点,其中c是该椭圆的半焦距,椭圆上的点到直线x﹣y﹣c=0距离的最大值为
(1)求椭圆的离心率;
(2)若a>2c时,求椭圆的方程.
题型:安徽省期末题难度:| 查看答案
已知是椭圆的左右焦点,点P是椭圆C上的动点.
(1)若椭圆C的离心率为,且的最大值为8,求椭圆C的方程;
(2)若△P为等腰直角三角形,求椭圆C的离心率.
题型:江苏省期末题难度:| 查看答案
已知椭圆的左、右焦点分别为,椭圆的离心率为且经过点.M为椭圆上的动点,以M为圆心,M为半径作圆M.
(1)求椭圆C的标准方程;
(2)若圆M与y轴有两个交点,求点M横坐标的取值范围;
(3)是否存在定圆N,使得圆N与圆M相切?若存在.求出圆N的方程;若不存在,说明理由.
题型:江苏省期末题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.