当前位置:高中试题 > 数学试题 > 椭圆 > 已知P为x24+y29=1,F1,F2为椭圆的左右焦点,则PF2+PF1=______....
题目
题型:不详难度:来源:
已知P为
x2
4
+
y2
9
=1
,F1,F2为椭圆的左右焦点,则PF2+PF1=______.
答案
x2
4
+
y2
9
=1
,F1,F2为椭圆的左右焦点,
∴根据椭圆的定义,可得|PF2|+|PF1|=2×2=4
故答案为:4
核心考点
试题【已知P为x24+y29=1,F1,F2为椭圆的左右焦点,则PF2+PF1=______.】;主要考察你对椭圆等知识点的理解。[详细]
举一反三
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为


3
2
,其左、右焦点为F1、F2,点P是坐标平面内一点,且|OP|=


15
2


PF1


PF2
=
3
4
其中O为坐标原点.
(1)求椭圆C的方程;
(2)过点S(-
6
5
,0),且斜率为k的动直线l交椭圆于A、B两点,在x轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点恰好是抛物线y=
1
4
x2
的焦点,离心率为
2


5
5

(1)求椭圆C的标准方程;
(2)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若


MA
=λ1


AF


MB
=λ2


BF
,求证:λ12=-10.
题型:东莞二模难度:| 查看答案
椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的一个焦点F1(-2,0),
a2
c
=8
(c为椭圆的半焦距).
(1)求椭圆C的方程;
(2)若M为直线x=8上一点,A为椭圆C的左顶点,连接AM交椭圆于点P,求
PM
AP
的取值范围.
题型:不详难度:| 查看答案
已知椭圆
x2
2b2
+
y2
b2
=1(b>0)

(1)若圆(x-2)2+(y-1)2=
20
3

(2)与椭圆相交于A、B两点且线段AB恰为圆的直径,求椭圆方程;
(3)设L为过椭圆右焦点F的直线,交椭圆于M、N两点,且L的倾斜角为60°.求
|MF|
|NF|
的值.
题型:不详难度:| 查看答案
已知圆G:x2+y2-2x-


2
y=0
经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F及上顶点B.
(1)求椭圆的方程;
(2)过椭圆外一点M(m,0)(m>a)倾斜角为
5
6
π
的直线l交椭圆于C、D两点,若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围.
题型:虹口区三模难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.