当前位置:高中试题 > 数学试题 > 椭圆 > 已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为32,其左、右焦点为F1、F2,点P是坐标平面内一点,且|OP|=152,PF1•PF2=34,其中O...
题目
题型:不详难度:来源:
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为


3
2
,其左、右焦点为F1、F2,点P是坐标平面内一点,且|OP|=


15
2


PF1


PF2
=
3
4
,其中O为坐标原点.Q为椭圆的左顶点.
(1)求椭圆C的方程;
(2)过点S(-
6
5
,0),且斜率为k的动直线l交椭圆于A、B两点,是否存在直线l,使得VQAB为等腰三角形?若存在,求出直线l的方程;若不存在,请说明理由.
答案
(1)设P(x0,y0),∵|OP|=


15
2
,∴x02+y02=
15
4



PF1


PF2
=
3
4
,∴(-c-x0,-y0)•(c-x0,-y0)=
3
4
,即x02-c2+y02=
3
4

①代入②得:c=


3
.又e=


3
2
,∴a=2,b=1.
故所求椭圆方程为
x2
4
+y2=1

(2)直线l的方程为y=k(x+
6
5
)

联立





y=k(x+
6
5
)
x2
4
+y2=1
,得(25+100k2)x2+240k2x+144k2-100=0.
x1+x2=-
240k2
25+100k2
x1x2=
144k2-100
25+100k2

设AB的中点M(x0,y0),
x0=-
120k2
25+100k2
y0=k(
6
5
-
120k2
25+100k2
)=
30k
25+100k2

所以kMQ=
30k
25+100k2
2-
120k2
25+100k2
=
3k
5+8k2

若三角形QAB为等腰三角形,则MQ⊥AB,
3k
5+8k2
•k=-1
,此式无解,
所以使得△QAB为等腰三角形的直线l不存在.
核心考点
试题【已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为32,其左、右焦点为F1、F2,点P是坐标平面内一点,且|OP|=152,PF1•PF2=34,其中O】;主要考察你对椭圆等知识点的理解。[详细]
举一反三
设椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的长半轴的长等于焦距,且x=4为它的右准线.
(I)求椭圆的方程;
(II)过定点M(m,0)(-2<m<2,m≠0为常数)作斜率为k(k≠0)的直线l与椭圆交于不同的两点A.B,问在x轴上是否存在一点N,使直线NA与NB的倾斜角互补?若存在,求出N点坐标,若不存在,请说明理由.
题型:河南模拟难度:| 查看答案
已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e,且b,e,
1
3
为等比数列,曲线y=8-x2恰好过椭圆的焦点.
(1)求椭圆C1的方程;
(2)设双曲线C2
x2
m2
-
y2
n2
=1
的顶点和焦点分别是椭圆C1的焦点和顶点,设O为坐标原点,点A,B分别是C1和C2上的点,问是否存在A,B满足


OA
=
1
2


OB
.请说明理由.若存在,请求出直线AB的方程.
题型:不详难度:| 查看答案
已知函数f(x)=mx-2+


2
-1
(m>0,m≠1)的图象恒通过定点(a,b).设椭圆E的方程为
x2
a2
+
y2
b2
=1
(a>b>0).
(1)求椭圆E的方程.
(2)若动点T(t,0)在椭圆E长轴上移动,点T关于直线y=-x+
1
t2+1
的对称点为S(m,n),求
n
m
的取值范围.
题型:不详难度:| 查看答案
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的上项点为B1,右、右焦点为F1、F2,△B1F1F2是面积为


3
的等边三角形.
(I)求椭圆C的方程;
(II)已知P(x0,y0)是以线段F1F2为直径的圆上一点,且x0>0,y0>0,求过P点与该圆相切的直线l的方程;
(III)若直线l与椭圆交于A、B两点,设△AF1F2,△BF1F2的重心分别为G、H,请问原点O在以线段GH为直径的圆内吗?若在请说明理由.
题型:不详难度:| 查看答案
设椭圆M:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为


2
2
,长轴长为6


2
,设过右焦点F倾斜角为θ的直线交椭圆M于A,B两点.
(Ⅰ)求椭圆M的方程;
(2)设过右焦点F且与直线AB垂直的直线交椭圆M于C,D,求|AB|+|CD|的最小值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.