当前位置:高中试题 > 数学试题 > 椭圆 > 已知椭圆E:x2a2+y2b2=1(a>b>0)的左顶点为A,左、右焦点分别为F1、F2,且圆C:x2+y2+3x-3y-6=0过A,F2两点.(1)求椭圆E的...
题目
题型:不详难度:来源:
已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的左顶点为A,左、右焦点分别为F1、F2,且圆C:x2+y2+


3
x-3y-6=0
过A,F2两点.
(1)求椭圆E的方程;
(2)设直线PF2的倾斜角为α,直线PF1的倾斜角为β,当β-α=
3
时,证明:点P在一定圆上.
(3)直线BC过坐标原点,与椭圆E相交于B,C,点Q为椭圆E上的一点,若直线QB,QC的斜率kQB,kQC存在且不为0,求证:kQB•kQC为定植.
答案
(1)∵圆x2+y2+


3
x-3y-6=0
与x轴交点坐标为A(-2


3
,0)
F2(


3
,0)

a=2


3
,c=


3
,∴b=3,
∴椭圆方程是:
x2
12
+
y2
9
=1
.…(4分)
(2)证明:设点P(x,y),因为F1(-


3
,0),F2


3
,0),
所以kPF1=tanβ=
y
x+


3
kPF2=tanα=
y
x-


3

因为β-α=
3
,所以tan(β-α)=-


3

因为tan(β-α)=
tanβ-tanα
1+tanαtanβ
=
-2


3
y
x2+y2-3
,所以
-2


3
y
x2+y2-3
=-


3

化简得x2+y2-2y=3,所以点P在定圆x2+y2-2y=3上.…(10分)
(3)证明:设B(m,n),Q(x′,y′),则C(-m,-n)
∴kQB•kQC=
n-y′
m-x′
-n-y′
-m-x′
=
n2-y2
m2-x2

m2
12
+
n2
9
=1
x′2
12
+
y′2
9
=1

∴两式相减可得
m2-x2
12
+
n2-y2
9
=0

n2-y2
m2-x2
=-
3
4

∴kQB•kQC=-
3
4
…(12分)
核心考点
试题【已知椭圆E:x2a2+y2b2=1(a>b>0)的左顶点为A,左、右焦点分别为F1、F2,且圆C:x2+y2+3x-3y-6=0过A,F2两点.(1)求椭圆E的】;主要考察你对椭圆等知识点的理解。[详细]
举一反三
已知椭圆C的长轴长为2


2
,一个焦点的坐标为(1,0).
(1)求椭圆C的标准方程;
(2)设直线l:y=kx与椭圆C交于A,B两点,点P为椭圆的右顶点.
①若直线l斜率k=1,求△ABP的面积;
②若直线AP,BP的斜率分别为k1,k2,求证:k1•k2为定值.
题型:丰台区二模难度:| 查看答案
已知椭圆的中心在原点,对称轴为坐标轴,左焦点为F1(-3,0),右准线方程为x=
25
3

(1)求椭圆的标准方程和离心率e;
(2)设P为椭圆上第一象限的点,F2为右焦点,若△PF1F2为直角三角形,求△PF1F2的面积.
题型:不详难度:| 查看答案
过点(3,-2)且与椭圆4x2+9y2-36=0有相同焦点的椭圆方程是(  )
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
A.B.
C.D.
已知椭圆
x2
a2
+
y2
b2
=1 (a>b>0)
的两焦点与短轴的一个端点的连线构成等腰直角三角形,且直线x-y+b=0是抛物线y2=4x的一条切线.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点S (0, -
1
2
)
且斜率为1的直线l交椭圆C于M、N两点,求|MN|的值.
选修4-4:坐标系与参数方程
椭圆中心在原点,焦点在x轴上.离心率为
1
2
,点P(x,y)是椭圆上的一个动点,若2x+


3
y
的最大值为10,求椭圆的标准方程.