当前位置:高中试题 > 数学试题 > 椭圆 > 若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,一个焦点的坐标是(3,0),则椭圆的标准方程为(  )A.B.C.D....
题目
题型:不详难度:来源:
若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,一个焦点的坐标是(3,0),则椭圆的标准方程为(  )
答案
核心考点
试题【若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,一个焦点的坐标是(3,0),则椭圆的标准方程为(  )A.B.C.D.】;主要考察你对椭圆等知识点的理解。[详细]
举一反三
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
A.B.
C.D.
中心在原点,焦点在x轴上的一椭圆与一双曲线有共同的焦点F1,F2,且|F1F2|=2


13
,椭圆的长半轴与双曲线的实半轴之差为4,离心率之比为3:7.
(Ⅰ)求椭圆和双曲线的方程;
(Ⅱ)若P为双曲线与椭圆的交点,求cos∠F1PF2
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=


6
3
,焦点是函数f(x)=x2-2与x轴的交点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线y=kx+2(k≠0与椭圆交于C、D两点,|CD|=
6


2
5
,求k的值.
已知三点P(
5
2
,-
3
2
)
、A(-2,0)、B(2,0).(1)求以A、B为焦点且过点P的椭圆的标准方程;(2)求以A、B为顶点且以(1)中椭圆左、右顶点为焦点的双曲线方程.
已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2,离心率为


2
2
;抛物线C2:y2=2px(p>0)上一点(1,m )到其焦点的距离为2.
(1)求椭圆C1和抛物线C2的方程;
(2)设直线l同时与椭圆C1和抛物线C2相切,求直线l的方程.
已知点A(1,1)是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上的一点,F1,F2是椭圆的两个焦点,且满足|AF1|+|AF2|=4.
(1)求椭圆的方程及离心率;
(2)设点C,D是椭圆上的两点,直线AC、AD的倾斜角互补,试判断直线CD的斜率是否为定值?并说明理由.