当前位置:高中试题 > 数学试题 > 椭圆 > 已知椭圆C的中心在坐标原点,焦点在x轴上,离心率e=32,且点P(-2,0)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)已知A、B为椭圆C上的动点,当PA⊥PB时,...
题目
题型:不详难度:来源:
已知椭圆C的中心在坐标原点,焦点在x轴上,离心率e=


3
2
,且点P(-2,0)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知A、B为椭圆C上的动点,当PA⊥PB时,求证:直线AB恒过一个定点.并求出该定点的坐标.
答案
(1)设椭圆的方程为:
x2
a2
+
y2
b2
=1(a>b>0)

由题意得
c
a
=


3
2
,a=2,所以c=


3

又b2=a2-c2=1,
所以椭圆的方程为:
x2
4
+y2=1

(2)①当直线l不垂直于x轴时,设AB:y=kx+m,A(x1,y1)B(x2,y2),





x2+4y2=4
y=kx+m
,得(1+4k2)x2+8kmx+4(m2-1)=0,x1+x2=-
8km
1+4k2
x1x2=
4(m2-1)
1+4k2



PA


PB
=(x^+2)(x2+2)+y1y2=(1+k2)x1x2+(2+km)(x1+x2)+m2+4
=(1+k2)
4(m2-1)
1+4k2
+(2+km)
-8km
1+4k2
+m2+4=0

∴12k2+5m2-16km=0,即(6k-5m)(2k-m)=0,解得m=
6
5
k或m=2k

m=
6
5
k
时,AB:y=kx+
6
5
k
恒过定点(-
6
5
,0)

当m=2k时,AB:y=kx+2k恒过定点(-2,0),不符合题意舍去;
②当直线l垂直于x轴时,直线AB:x=-
6
5
,则AB与椭圆C相交于A(-
6
5
,-
4
5
)
B(-
6
5
4
5
)



PA


PB
=(
4
5
,-
4
5
)•(
4
5
4
5
)=(
4
5
)2+(-
4
5
)(
4
5
)=0
,∵PA⊥PB,满足题意,
综上可知,直线AB恒过定点,且定点坐标为(-
6
5
,0)
核心考点
试题【已知椭圆C的中心在坐标原点,焦点在x轴上,离心率e=32,且点P(-2,0)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)已知A、B为椭圆C上的动点,当PA⊥PB时,】;主要考察你对椭圆等知识点的理解。[详细]
举一反三
已知椭圆C:
x2
a2
+
y2
b2
=1的两个焦点分别是F1(-1,0)、F2(1,0),且焦距是椭圆C上一点p到两焦点F1,F2距离的等差中项.
(1)求椭圆C的方程;
(2)设经过点F2的直线交椭圆C于M,N两点,线段MN的垂直平分线交y轴于点Q(x0,y0),求y0的取值范围.
题型:杨浦区一模难度:| 查看答案
已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)经过点M(1,
3
2
)
,其离心率为
1
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+m  (|k|≤
1
2
)
与椭圆C相交于A、B两点,以线段OA,OB为邻边作平行四边形OAPB,其中顶点P在椭圆C上,O为坐标原点.求|OP|的取值范围.
题型:海淀区一模难度:| 查看答案
已知椭圆E:
x2
a2
+
y2
b2
=1
(a,b>0)与双曲线G:x2-y2=4,若椭圆E的顶点恰为双曲线G的焦点,椭圆E的焦点恰为双曲线G的顶点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在一个以原点为圆心的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A、B,且


OA


OB
?若存在请求出该圆的方程,若不存在请说明理由.
题型:不详难度:| 查看答案
已知椭圆的中心在原点O,短半轴的端点到其右焦点F(2,0)的距离为


10
,过焦点F作直线l,交椭圆于A,B两点.
(Ⅰ)求这个椭圆的标准方程;
(Ⅱ)若椭圆上有一点C,使四边形AOBC恰好为平行四边形,求直线l的斜率.
题型:通州区一模难度:| 查看答案
已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点F1(-


5
,0)
,若椭圆上存在一点D,满足以椭圆短轴为直径的圆与线段DF1相切于线段DF1的中点F.
(Ⅰ)求椭圆E的方程;
(Ⅱ)已知两点Q(-2,0),M(0,1)及椭圆G:
9x2
a2
+
y2
b2
=1
,过点Q作斜率为k的直线l交椭圆G于H,K两点,设线段HK的中点为N,连接MN,试问当k为何值时,直线MN过椭圆G的顶点?
(Ⅲ) 过坐标原点O的直线交椭圆W:
9x2
2a2
+
4y2
b2
=1
于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC并延长交椭圆W于B,求证:PA⊥PB.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.