当前位置:高中试题 > 数学试题 > 直线与圆的位置关系 > 如图,已知直线l:x=my+4(m∈R)与x轴交于点P,交抛物线y2=2ax(a>0)于A,B两点,坐标原点O是PQ的中点,记直线AQ,BQ的斜率分别为k1,k...
题目
题型:不详难度:来源:
如图,已知直线l:x=my+4(m∈R)与x轴交于点P,交抛物线y2=2ax(a>0)于A,B两点,坐标原点O是PQ的中点,记直线AQ,BQ的斜率分别为k1,k2
(Ⅰ)若P为抛物线的焦点,求a的值,并确定抛物线的准线与以AB为直径的圆的位置关系.
(Ⅱ)试证明:k1+k2为定值.
答案
(Ⅰ)由直线l:x=my+4得点P(4,0),故
a
2
=4⇒a=8
…(2分)
设交点A(x1,y1),B(x2,y2),它们的中点M(
x1+x2
2
y1+y2
2
)

设点M到抛物线的准线的距离为d,则d=
x1+x2
2
+4
,…(4分)
r=
1
2
|AB|=
x1+4+x2+4
2
=
x1+x2
2
+4
=d,
∴抛物线的准线与以AB为直径的圆相切.…(6分)
(Ⅱ)由直线l:x=my+4得点P(4,0),∴Q(-4,0),
将直线l:x=my+4与抛物线的方程y2=2ax联立得y2-2amy-8a=0,
∵△>0恒成立,





y1+y2=2am
y1y2=-8a
(*)
…(9分)
k1+k2=
y1
x1+4
+
y2
x2+4

=
y1(x2+4)+y2(x1+4)
(x1+4)(x2+4)
=
y1(my2+8)+y2(my1+8)
(x1+4)(x2+4)
…(11分)
k1+k2=
2my1y2+8(y1+y2)
(x1+4)(x2+4)
,代入(*)得k1+k2=0,故k1+k2为定值得征.…(13分)
核心考点
试题【如图,已知直线l:x=my+4(m∈R)与x轴交于点P,交抛物线y2=2ax(a>0)于A,B两点,坐标原点O是PQ的中点,记直线AQ,BQ的斜率分别为k1,k】;主要考察你对直线与圆的位置关系等知识点的理解。[详细]
举一反三
已知直线l过点A(-6,7)与圆C:x2+y2-8x+6y+21=0相切,
(1)求该圆的圆心坐标及半径长
(2)求直线l的方程.
题型:不详难度:| 查看答案
过点P(0,1)向圆x2+y2-4x-6y+12=0引切线,则切线长为______.
题型:不详难度:| 查看答案
直线y=
3
4
x
与圆(x-1)2+(y+3)2=16的位置关系是(  )
A.相交且过圆心B.相交但不过圆心
C.相切D.相离
题型:不详难度:| 查看答案
已知圆C:(x-1)2+(y+2)2=9,直线l:(m+1)x-y-2m-3=0(m∈R)
(1)求证:无论m取什么实数,直线恒与圆交于两点;
(2)求直线l被圆C所截得的弦长最小时的直线方程.
题型:不详难度:| 查看答案
已知圆O:x2+y2=4,动点P(t,0)(-2≤t≤2),曲线C:y=3|x-t|.曲线C与圆O相交于两个不同的点M,N
(1)若t=1,求线段MN的中点P的坐标;
(2)求证:线段MN的长度为定值;
(3)若t=
4
3
,m,n,s,p均为正整数.试问:曲线C上是否存在两点A(m,n),B(s,p)(11),使得圆O上任意一点到点A的距离与到点B的距离之比为定值k(k>1)?若存在请求出所有的点A,B;若不存在请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.