当前位置:高中试题 > 数学试题 > 线线角 > 将一幅斜边长相等的直角三角板拼接成如图所示的空间图形,其中AD=BD=,∠BAC=30°,若它们的斜边AB重合,让三角板ABD以AB为轴转动,则下列说法正确的是...
题目
题型:不详难度:来源:
将一幅斜边长相等的直角三角板拼接成如图所示的空间图形,其中AD=BD=,∠BAC=30°,若它们的斜边AB重合,让三角板ABD以AB为轴转动,则下列说法正确的是         .

①当平面ABD⊥平面ABC时,C、D两点间的距离为
②在三角板ABD转动过程中,总有AB⊥CD;
③在三角板ABD转动过程中,三棱锥D-ABC体积的最大值为.
答案
①③
解析

试题分析:①正确:取AB中点E,连接DE,CE,当平面ABD⊥平面ABC时 ;②错误:在三角板ABD转动过程中,不会有AB⊥CD;③正确:体积最大时平面ABD⊥平面ABC,三棱锥的高为1,体积为
点评:把握好翻折过程中不变的边角
核心考点
试题【将一幅斜边长相等的直角三角板拼接成如图所示的空间图形,其中AD=BD=,∠BAC=30°,若它们的斜边AB重合,让三角板ABD以AB为轴转动,则下列说法正确的是】;主要考察你对线线角等知识点的理解。[详细]
举一反三
(本小题满分12分)
正方体ABCD-A1B1C1D1中,E、G分别是BC、C1D1的中点,如图所示.

(1)求证:BD⊥A1C;
(2)求证:EG∥平面BB1D1D.
题型:不详难度:| 查看答案
(本小题满分14分)
如图,四棱锥S-ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90 ,且BC=2AD=2,AB=4,SA=3.

(1)求证:平面SBC⊥平面SAB;
(2)若E、F分别为线段BC、SB上的一点(端点除外),满足.(
①求证:对于任意的,恒有SC∥平面AEF;
②是否存在,使得△AEF为直角三角形,若存在,求出所有符合条件的值;若不存在,说明理由.
题型:不详难度:| 查看答案
如图,在正方体A1B1C1D1­ABCD中,E是C1D1的中点,则异面直线DE与AC夹角的余弦值为
A.B.C.D.

题型:不详难度:| 查看答案
(本小题满分12分)
在如图的多面体中,⊥平面,的中点.

(Ⅰ) 求证:平面
(Ⅱ) 求二面角的余弦值.
题型:不详难度:| 查看答案
(本小题满分15分)如图,在四棱锥中,底面是正方形,侧棱底面的中点,作于点

(1)证明:平面.
(2)证明:平面.
(3)求二面角的大小.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.