当前位置:高中试题 > 数学试题 > 面面垂直 > 如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高. (Ⅰ)证明:平面PAC⊥平面PBD; (Ⅱ)若,∠APB=∠...
题目
题型:四川省期末题难度:来源:
如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.
(Ⅰ)证明:平面PAC⊥平面PBD;
(Ⅱ)若,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.
答案
解:(1)因为PH是四棱锥P﹣ABCD的高.所以AC⊥PH,
又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H.
所以AC⊥平面PBD.
故平面PAC⊥平面PBD
(2)因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB= .所以HA=HB= .
因为∠APB=∠ADB=60° 所以PA=PB= ,HD=HC=1.可得PH= .
等腰梯形ABCD的面积为S= ACxBD=2+ 
所以四棱锥的体积为V= ×(2+ )× = . 
核心考点
试题【如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高. (Ⅰ)证明:平面PAC⊥平面PBD; (Ⅱ)若,∠APB=∠】;主要考察你对面面垂直等知识点的理解。[详细]
举一反三
如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P﹣ABCD的体积V.
题型:广东省同步题难度:| 查看答案
如图,四棱锥P﹣ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.
(1)求证:平面AEC⊥平面PDB;
(2)当且E为PB的中点时,求AE与平面PDB所成的角的大小.
题型:陕西省期末题难度:| 查看答案
如图,在底面是直角梯形的四棱锥S-ABCD中,∠ABC=90 °,SA⊥面ABCD,SA=AB=BC=1,AD=
(1)求四棱锥S-ABCD的体积。
(2)求证:面SAB⊥面SBC。
(3)求SC与底面ABCD所成角的正切值。
题型:期末题难度:| 查看答案
如图,已知直三棱柱ABC﹣A1B1C1中,AB=AC;M,N,P分别是棱BC,CC1,B1C1的中点,
(Ⅰ)求证:PQ∥平面ANB1
(Ⅱ)求证:平面AMN⊥平面AMB1
题型:安徽省模拟题难度:| 查看答案

如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,AB=2DC=
(Ⅰ)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(Ⅱ)求三棱锥C﹣PAB的体积.



题型:河南省模拟题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.