当前位置:高中试题 > 数学试题 > 线面垂直 > 已知一个四棱锥P-ABCD的三视图(正视图与侧视图为直角三角形,俯视图是带有一条对角形的正方形)如下,E是侧棱PC上的动点.(1)求四棱锥P-ABCD的体积;(...
题目
题型:不详难度:来源:
已知一个四棱锥P-ABCD的三视图(正视图与侧视图为直角三角形,俯视图是带有一条对角形的正方形)如下,E是侧棱PC上的动点.
(1)求四棱锥P-ABCD的体积;
(2)是否不论点E在何位置都有BD⊥AE,证明你的结论.
答案
(1)由三视图可知,PC⊥面ABCD,且PC=2,
底面ABCD是正方形,故体积Vp-ABCD=
1
3
×2×1×1=
2
3
;(6分)
(2)是,在任何位置都有BD⊥AE,理由如下:(8分)
连接AC,则AC⊥BD,PC⊥BD且PC交AC于C点,故BD⊥面PAC,
因为E是PC上的动点,所以AE在平面PAC内,所以BD⊥AE不论E在何位置都正确.(12分)
核心考点
试题【已知一个四棱锥P-ABCD的三视图(正视图与侧视图为直角三角形,俯视图是带有一条对角形的正方形)如下,E是侧棱PC上的动点.(1)求四棱锥P-ABCD的体积;(】;主要考察你对线面垂直等知识点的理解。[详细]
举一反三
如图,已知在直四棱柱ABCD-A1B1C1D1中,AD⊥DC,ABDC,DC=DD1=2AD=2AB=2.
(1)求证:DB⊥平面B1BCC1
(2)设E是DC上一点,试确定E的位置,使得D1E平面A1BD,并说明理由.
题型:不详难度:| 查看答案
如图,矩形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,ABCD,AB=AD=1,CD=2,DE=4,M为CE的中点.
(Ⅰ)求证:BM平面ADEF:
(Ⅱ)求证:BC⊥平面BDE;
(Ⅲ)求三棱锥C-MBD的体积.
题型:不详难度:| 查看答案
如图在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,垂足为点A,PA=AB=2,点M,N分别是PD,PB的中点.
(I)求证:PB平面ACM;
(II)求证:MN⊥平面PAC;
(III)求四面体A-MBC的体积.
题型:不详难度:| 查看答案
如图,三棱柱ABC-A1B1C1中,∠CAA1=60°,AA1=2AC,BC⊥平面AA1C1C.
(1)证明:A1C⊥AB;
(2)设BC=AC=2,求三棱锥C-A1BC1的体积.
题型:不详难度:| 查看答案
如图所示,在四棱锥P-ABCD中,PD⊥平面ABCD,AD⊥CD,AD=CD,DB平分∠ADC,E为PC的中点.求证:
(1)PA平面BDE;
(2)AC⊥平面PBD.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.