当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > 如图,已知长方体直线与平面所成的角为,垂直于,为的中点.(1)求异面直线与所成的角;(2)求平面与平面所成的二面角;(3)求点到平面的距离....
题目
题型:不详难度:来源:
如图,已知长方体
直线与平面所成的角为垂直
的中点.
(1)求异面直线所成的角;
(2)求平面与平面所成的二面角;
(3)求点到平面的距离.
答案
(1)(2)(3)
解析
在长方体中,以所在的直线为轴,以所在的直线为轴,所在的直线为轴建立如图示空间直角坐标系
由已知可得
平面,从而与平面所成的角为,又从而易得
(I)因为所以=
易知异面直线所成的角为。。。。。。。。。。。。。。。。。。。。。4分
(II)易知平面的一个法向量是平面的一个法向量,
所以即平面与平面所成的二面角的大小(锐角)为 
(III)点到平面的距离,即在平面的法向量上的投影的绝对值,
所以距离=所以点到平面的距离为
核心考点
试题【如图,已知长方体直线与平面所成的角为,垂直于,为的中点.(1)求异面直线与所成的角;(2)求平面与平面所成的二面角;(3)求点到平面的距离.】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
如图,在四棱锥P—ABCD中,PA⊥底面ABCD,∠, AB∥CD,AD=CD=2AB=2,E,F分别是PC,CD的中点.
(Ⅰ)证明:CD⊥平面BEF;
(Ⅱ)设
k的值.
题型:不详难度:| 查看答案
如图,直角梯形ABCE中,,D是CE的中点,点M和点N在ADE绕AD向上翻折的过程中,分别以的速度,同时从点A和点B沿AE和BD各自匀速行进,t 为行进时间,0
(1)      求直线AE与平面CDE所成的角;
(2)      求证:MN//平面CDE。
题型:不详难度:| 查看答案
四棱锥P—ABCD的底面是边长为a的正方形,PB⊥面ABCD.
(1)若面PAD与面ABCD所成的二面角为60°,求这个四棱锥的体积;
(2)证明无论四棱锥的高怎样变化,面PAD与面PCD所成的二面角恒大于90°
题型:不详难度:| 查看答案
如图a—l—是120°的二面角,A,B两点在棱上,AB=2,D在内,三角形ABD是等腰直角三角形,∠DAB=90°,C在内,ABC是等腰直角三角形∠ACB=
(I)       求三棱锥D—ABC的体积;
(2)求二面角D—AC—B的大小;     
(3)求异面直线AB、CD所成的角.
题型:不详难度:| 查看答案
已知三棱锥P—ABC中,PC⊥底面ABC,AB=BC,

D、F分别为AC、PC的中点,DE⊥AP于E.
(1)求证:AP⊥平面BDE;                
(2)求证:平面BDE⊥平面BDF;
(3)若AE∶EP=1∶2,求截面BEF分三棱锥
P—ABC所成两部分的体积比.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.