当前位置:高中试题 > 数学试题 > 正弦定理 > 在△ABC中,。(1)求角B;(2)若sinA=,求cosC的值。...
题目
题型:同步题难度:来源:
在△ABC中,
(1)求角B;
(2)若sinA=,求cosC的值。
答案
解:(1)依题意得
sin2A-sin2B=sin(A+B)(sinA-sinC) =sinAsinC-sin2C,
由正弦定理得:a2-b2=ac-c2
∴a2+c2-b2=ac,
由余弦定理知:cosB=
∴B=
(2)∵sinA=,∴<sinA<

又B=

∴cosA=
∴cosC=cos(-A)=coscosA+sinsinA=-
核心考点
试题【在△ABC中,。(1)求角B;(2)若sinA=,求cosC的值。】;主要考察你对正弦定理等知识点的理解。[详细]
举一反三
△ABC中,a=,b=,sinB=,则符合条件的三角形有[     ]
A.1个
B.2个
C.3个
D.0个
题型:同步题难度:| 查看答案
设△ABC的内角A,B,C所对的边分别为a,b,c,且atanB=,bsinA=4。
(1)求cosB和a;
(2)若△ABC的面积S=10,求cos4C的值。
题型:同步题难度:| 查看答案
在△ABC中,a,b,c分别为内角A,B,C所对的边长,a=,b=,1+2cos(B+C)=0,求边BC上的高.
题型:安徽省高考真题难度:| 查看答案
在△ABC中,a,b,c分别为角A,B,C的对边,若ccosB=bcosC,且,则sinB等于 [     ]
A.
B.
C.
D.
题型:专项题难度:| 查看答案
在△ABC中,AB=,A=45°,C=75°,则BC=[     ]
A.
B.
C.2
D.
题型:专项题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.