当前位置:高中试题 > 数学试题 > 函数极值与最值 > 有一块边长为4的正方形钢板,现对其进行切割、焊接成一个长方体形无盖容器(切、焊损耗忽略不计).有人应用数学知识作了如下设计:如图(a),在钢板的四个角处各切去一...
题目
题型:广东省模拟题难度:来源:
有一块边长为4的正方形钢板,现对其进行切割、焊接成一个长方体形无盖容器(切、焊损耗忽略不计).有人应用数学知识作了如下设计:如图(a),在钢板的四个角处各切去一个小正方形,剩余部分围成一个长方体,该长方体的高为小正方形边长,如图(b).
(1)请你求出这种切割、焊接而成的长方体的最大容积V1
(2)由于上述设计存在缺陷(材料有所浪费),请你重新设计切、焊方法,使材料浪费减少,而且所得长方体容器的容积V2>V1
答案

解:(1)设切去正方形边长为x,则焊接成的长方体的底面边长为4﹣2x,高为x,
∴V1=(4﹣2x)2x=4(x3﹣4x2+4x)(0<x<2).
∴V1"=4(3x2﹣8x+4).
令V1"=0,得x1=,x2=2(舍去).
而V1"=12(x﹣)(x﹣2),又当x<时,V1">0;
<x<2时,V1"<0,
∴当x=时,V1取最大值
(2)重新设计方案如下:如图①,在正方形的两个角处各切下一个边长为1的小正方形;
如图②,将切下的小正方形焊在未切口的正方形一边的中间;
如图③,将图②焊成长方体容器.新焊长方体容器底面是一长方形,长为3,宽为2,此长方体容积V2=3×2×1=6,显然V2>V1.故第二种方案符合要求.


核心考点
试题【有一块边长为4的正方形钢板,现对其进行切割、焊接成一个长方体形无盖容器(切、焊损耗忽略不计).有人应用数学知识作了如下设计:如图(a),在钢板的四个角处各切去一】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
已知函数 ,a∈R.
(Ⅰ)当 a=1 时,求函数 f(x) 的最小值;
(Ⅱ)当 a≠0 时,讨论函数 f(x) 的单调性;
(Ⅲ)是否存在实数a,对任意的 x1,x2∈(0,+∞),且x1x2,有,恒成立,若存在求出a的取值范围,若不存在,说明理由.
题型:安徽省模拟题难度:| 查看答案
设函数f(x)=2x3﹣12x+c是定义在R上的奇函数.
(Ⅰ)求c的值及函数f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求函数f(x)的单调递增区间,并求函数f(x)在[﹣1,3]上的最大值和最小值.
题型:北京期中题难度:| 查看答案
某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格.销售量可以增加,且每星期多卖出的商品件数与商品单价的降低销x(单位:元,0≤x≤30)的平方成正比.已知商品单价降低2元时,一星期多卖出24件.
(Ⅰ)将一个星期的商品销售利润表示成x的函数;
(Ⅱ)如何定价才能使一个星期的商品销售利润最大?
题型:河南省模拟题难度:| 查看答案
已知函数f(x)=﹣x2+ax﹣lnx(a∈R).
(1)当a=3时,求函数f(x)在上的最大值;
(2)当函数f(x)在单调时,求a的取值范围.
题型:河南省模拟题难度:| 查看答案
已知f′(x)是f(x)的导函数,f(x)=ln(x+1)+m﹣2f′(1),m∈R,且函数f(x)的图象过点(0,-2).
(1)求函数y=f(x)的表达式;
(2)设,若g(x)>0在定义域内恒成立,求实数a的取值范围.
题型:北京期中题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.