当前位置:高中试题 > 数学试题 > 函数极值与最值 > 设关于x的函数f(x)=mx2﹣(2m2+4m+1)x+(m+2)lnx,其中m为R上的常数,若函数f(x)在x=1处取得极大值0.(1)求实数m的值;(2)若...
题目
题型:江西省月考题难度:来源:
设关于x的函数f(x)=mx2﹣(2m2+4m+1)x+(m+2)lnx,其中m为R上的常数,若函数f(x)在x=1处取得极大值0.
(1)求实数m的值;
(2)若函数f(x)的图象与直线y=k有两个交点,求实数k的取值范围;
(3)设函数 ,若对任意的x∈[1,2],2f(x)≥g(x)+4x﹣2x2恒成立,求实数p的取值范围.
答案

解:(1) = 
因为函数f(x)在x=1处取得极大值0
所以, 解m=﹣1
(2)由(1)知 
令f"(x)=0得x=1或 (舍去)
所以函数f(x)在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,
所以,当x=1时,函数f(x)取得最大值,f(1)=ln1﹣1+1=0
当x≠1时,f(x)<f(1),即f(x)<0
所以,当k<0时,函数f(x)的图象与直线y=k有两个交点,
(3)设  

当p=0时, ,F(x)在[1,2]递增,F(1)=﹣2<0不成立,(舍)
当p≠0时  当 ,即﹣1<p<0时,
F(x)在[1,2]递增,F(1)=﹣2p﹣2<0,不成立
当 ,即p<﹣1时,F(x)在[1,2]递增,
所以F(1)=﹣2p﹣2≥0,解得p≤﹣1,
所以,此时p<﹣1 当p=﹣1时,F(x)在[1,2]递增,成立;
当p>0时,F(1)=﹣2p﹣2<0不成立,
综上,p≤﹣1


核心考点
试题【设关于x的函数f(x)=mx2﹣(2m2+4m+1)x+(m+2)lnx,其中m为R上的常数,若函数f(x)在x=1处取得极大值0.(1)求实数m的值;(2)若】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
已知定义在R上的函数f(x)=x2(ax﹣3),其中a为常数.
(1)若x=1是函数f(x)的一个极值点,求a的值;
(2)若函数f(x)在区间(﹣1,0)上是增函数,求a的取值范围;
(3)若函数g(x)=f(x)+f"(x),x∈0,2],在x=0处取得最大值,求正数a的取值范围.
题型:山东省月考题难度:| 查看答案
已知函数
(I)若f(x)在处取和极值,
①求a、b的值;
②存在,使得不等式f()-c≤0成立,求c的最小值;
(II)当b=a时,若f(x)在(0,+∞)上是单调函数,求a的取值范围
(参考数据e2≈7.389,e3≈20.08)
题型:宁夏回族自治区月考题难度:| 查看答案
已知函数f(x)=ax3+bx2﹣3x在x=±1处取得极值
(1)求函数f(x)的解析式;
(2)求证:对于区间[﹣1,1]上任意两个自变量的值x1,x2,都有|f(x1)﹣f(x2)|≤4;
(3)若过点A(1,m)(m≠﹣2)可作曲线y=f(x)的三条切线,求实数m的范围.
题型:山东省月考题难度:| 查看答案
设函数f(x)=ex+sinx,g(x)=ax,F(x)=f(x)﹣g(x).
(1)若x=0是F(x)的极值点,求实数a的值;
(2)若x>0时,函数y=F(x)的图象恒在y=F(﹣x)的图象上方,求实数a的取值范围.
题型:山西省月考题难度:| 查看答案

设函数f(x)=(1+x)2﹣2ln(1+x).
(1)求f (x)的单调区间;
(2)若当时,不等式f (x)<m恒成立,求实数m的取值范围;
(3)若关于x的方程f(x)=x2+x+a在区间[0,2]上恰好有两个相异的实根,求实数a的取值范围.


题型:四川省月考题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.