当前位置:高中试题 > 数学试题 > 函数极值与最值 > 设函数f(x)=xsinx在x=x0处取得极值,则(1+x02)cos2x0的值为(  )A.0B.1C.2D.3...
题目
题型:不详难度:来源:
设函数f(x)=xsinx在x=x0处取得极值,则(1+x02)cos2x0的值为(  )
A.0B.1C.2D.3
答案
f(x)=xsinx则f′(x)=sinx+xcosx=0
解得tanx=-x,
∴x02=tan2x0
∴(x02+1)cos2x0=(tan2x0+1)cos2x0=
cos2x0+sin2x0
cos2x0
×cos2x0
=1
故答案为:1.
核心考点
试题【设函数f(x)=xsinx在x=x0处取得极值,则(1+x02)cos2x0的值为(  )A.0B.1C.2D.3】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
已知函数f(x)=x3-2x,其中a-1≤x≤a+1,a∈R,设集合M={(m,f(n))|m,n∈[a-1,a+1]|},若f(x)单调递增,则S的最小值为______.
题型:不详难度:| 查看答案
已知函数f(x)=x2-(2a+1)x+alnx.
(Ⅰ)当a=1时,求函数f(x)的单调增区间;
(Ⅱ)求函数f(x)在区间[1,e]上的最小值;
(Ⅲ)设g(x)=(1-a)x,若存在x0∈[
1
e
,e]
,使得f(x0)≥g(x0)成立,求实数a的取值范围.
题型:不详难度:| 查看答案
已知函数f(x)=ex,直线l的方程为y=kx+b.
(1)若直线l是曲线y=f(x)的切线,求证:f(x)≥kx+b对任意x∈R成立;
(2)若f(x)≥kx+b对任意x∈R成立,求实数k、b应满足的条件.
题型:不详难度:| 查看答案
已知函数f(x)=alnx+x2(a为实常数).
(1)若a=-2,求证:函数f(x)在(1,+∞)上是增函数;
(2)求函数f(x)在[1,e]上的最小值及相应的x值;
(3)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求实数a的取值范围.
题型:不详难度:| 查看答案
已知函数f(x)=x3+ax2+2(a∈R)且曲线y=f(x)在点(2,f(2))处切线斜率为0.
求:(Ⅰ)a的值;
(Ⅱ)f(x)在区间[-1,3]上的最大值和最小值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.