当前位置:高中试题 > 数学试题 > 函数极值与最值 > 已知函数f(x)=alnx+x2(a为实常数).(1)若a=-2,求证:函数f(x)在(1,+∞)上是增函数;(2)求函数f(x)在[1,e]上的最小值及相应的...
题目
题型:不详难度:来源:
已知函数f(x)=alnx+x2(a为实常数).
(1)若a=-2,求证:函数f(x)在(1,+∞)上是增函数;
(2)求函数f(x)在[1,e]上的最小值及相应的x值;
(3)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求实数a的取值范围.
答案
(1)当a=-2时,f(x)=x2-2lnx,当x∈(1,+∞),f′(x)=
2(x2-1)
x
>0

(2)f′(x)=
2x2+a
x
(x>0)
,当x∈[1,e],2x2+a∈[a+2,a+2e2].
若a≥-2,f"(x)在[1,e]上非负(仅当a=-2,x=1时,f"(x)=0),故函数f(x)在[1,e]上是增函数,此时[f(x)]min=f(1)=1. 
若-2e2<a<-2,当x=


-a
2
时,f"(x)=0;
1≤x<


-a
2
时,f"(x)<0,此时f(x)是减函数;


-a
2
<x≤e
时,f"(x)>0,此时f(x)是增函数.
故[f(x)]min=f(


-a
2
)
=
a
2
ln(-
a
2
)-
a
2

若a≤-2e2,f"(x)在[1,e]上非正(仅当a=-2e2,x=e时,f"(x)=0),
故函数f(x)在[1,e]上是减函数,此时[f(x)]min=f(e)=a+e2
综上可知,当a≥-2时,f(x)的最小值为1,相应的x值为1;当-2e2<a<-2时,f(x)
的最小值为
a
2
ln(-
a
2
)-
a
2
,相应的x值为


-a
2
;当a≤-2e2时,f(x)的最小值为a+e2
相应的x值为e.
(3)不等式f(x)≤(a+2)x,可化为a(x-lnx)≥x2-2x.
∵x∈[1,e],∴lnx≤1≤x且等号不能同时取,所以lnx<x,即x-lnx>0,
因而a≥
x2-2x
x-lnx
(x∈[1,e])
g(x)=
x2-2x
x-lnx
(x∈[1,e]),又g′(x)=
(x-1)(x+2-2lnx)
(x-lnx)2

当x∈[1,e]时,x-1≥0,lnx≤1,x+2-2lnx>0,
从而g"(x)≥0(仅当x=1时取等号),所以g(x)在[1,e]上为增函数,
故g(x)的最小值为g(1)=-1,所以a的取值范围是[-1,+∞).
核心考点
试题【已知函数f(x)=alnx+x2(a为实常数).(1)若a=-2,求证:函数f(x)在(1,+∞)上是增函数;(2)求函数f(x)在[1,e]上的最小值及相应的】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
已知函数f(x)=x3+ax2+2(a∈R)且曲线y=f(x)在点(2,f(2))处切线斜率为0.
求:(Ⅰ)a的值;
(Ⅱ)f(x)在区间[-1,3]上的最大值和最小值.
题型:不详难度:| 查看答案
已知函数f(x)=x2+2x+a•lnx.
(1)若函数f(x)在区间(0,1]上恒为单调函数,求实数a的取值范围;
(2)当t≥1时,不等式f(2t-1)≥2f(t)-3恒成立,求实数a的取值范围.
题型:不详难度:| 查看答案
若实数a,b,c,d满足(b+a2-3lna)2+(c-d+2)2=0,则(a-c)2+(b-d)2的最小值为(  )
A.


2
B.2C.2


2
D.8
题型:不详难度:| 查看答案
已知函数f(x)=px-
p
x
-2lnx

(Ⅰ)若p=2,求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数f(x)在其定义域内为增函数,求正实数p的取值范围;
(Ⅲ)设函数g(x)=
2e
x
,若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求实数p的取值范围.
题型:不详难度:| 查看答案
已知函数f(x)=
1
3
x3-
1
2
ax2+
9
2
(a>0)

(1)当a=3时,求f(x)的单调递增区间;
(II)求证:曲线y=f(x)总有斜率为a的切线;
(III)若存在x∈[-1,2],使f(x)<0成立,求a的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.