当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知函数f(x)=lnx-ax(a∈R)(1)讨论f(x)在[1,e]上的单调性;(2)若f(x)<x在[1,+∞)上恒成立,试求a的取值范围....
题目
题型:淄博一模难度:来源:
已知函数f(x)=lnx-
a
x
(a∈R)
(1)讨论f(x)在[1,e]上的单调性;
(2)若f(x)<x在[1,+∞)上恒成立,试求a的取值范围.
答案

魔方格
(Ⅰ)f(x)的定义域为(0,+∞),f′(x)=
1
x
+
a
x2
=
a+x
x2

①当a≥-1,因为1≤x≤e,所以x+a≥0,此时f"(x)≥0,所以f(x)在[1,e]上为增函数.
②当a≤-e时,因为1≤x≤e,所以x+a≥0,此时f"(x)≤0,此时f(x)在[1,e]上为减函数.
③当-e<a<-1时,令f"(x)=0得x=-a.于是当1≤x≤-a时,f"(x)≤0,所以函数f(x)在[1,-a]上为减函数.
当-a≤x≤e时,f"(x)≥0,所以函数f(x)在[-a,e]上为增函数.
综上可知,当a≥-1时,f(x)在[1,e]上为增函数.当a≤-e时,f(x)在[1,e]上为减函数.
当-e<a<-1时,f(x)在[1,-a]上为减函数,在[-a,e]上为增函数.
(Ⅱ)由f(x)<x,得lnx-
a
x
<x,因为x≥1,所以a>xln⁡x-x2
令g(x)=xln⁡x-x2,要使a>xln⁡x-x2 在[1,+∞)上恒成立,只需a>gmax⁡(x)即可.
g"(x)=lnx-2x+1=lnx-(2x-1),分别作出函数y=lnx和y=2x-1的图象如图.由图象可知当x≥1时,lnx<2x-1.
此时g"(x)<0,所以g(x)在[1,+∞)单调递减,所以g(x)的最大值为g(1)=-1,所以a>-1,即a的取值范围是(-1,+∞).
核心考点
试题【已知函数f(x)=lnx-ax(a∈R)(1)讨论f(x)在[1,e]上的单调性;(2)若f(x)<x在[1,+∞)上恒成立,试求a的取值范围.】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
已知函数f(x)=lnx+
1-x
ax
,其中a
为大于零的常数.
(1)若函数f(x)在区间[1,+∞)内调递增,求a的取值范围;
(2)求函数f(x)在区间[1,2]上的最小值;
(3)求证:对于任意的n∈N*,且n>1时,都有lnn>
1
2
+
1
3
+…+
1
n
成立.
题型:不详难度:| 查看答案
设a为实常数,函数f(x)=-x3+ax2-4.
(1)若函数y=f(x)的图象在点P(1,f(1))处的切线的倾斜角为
π
4
,求函数f(x)的单调区间;
(2)若存在x0∈(0,+∞),使f(x0)>0,求a的取值范围.
题型:不详难度:| 查看答案
已知函数f(x)=x3-ax2-3x
(1)当a=2时,求f(x)的零点;
(2)若x=3是f(x)的极值点,求f(x)的[1,a]上的最小值和最大值;
(3)若f(x)在[1,+∞)上是增函数,求实数a的取值范围.
题型:不详难度:| 查看答案
设f(x)是定义在R上的可导函数,且满足f(x)+xf′(x)>0.则不等式f(


x+1
)>


x-1
f(


x2-1
)
的解集为______.
题型:盐城二模难度:| 查看答案
已知函数f(x)=x3+ax2+b(a∈R,b∈R)
(Ⅰ)若 a>0,且f(x)的极大值为5,极小值1,求f(x)的解析式;
(Ⅱ)若f(x)在(-∞,-
1
2
)上是增函数,求a的取值范围.
题型:威海一模难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.