当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知函数f(x)=(ax2+x)ex,其中e是自然数的底数,a∈R.(1)当a<0时,解不等式f(x)>0;(2)当a=0时,求正整数k的值,使方程f(x)=x...
题目
题型:不详难度:来源:
已知函数f(x)=(ax2+x)ex,其中e是自然数的底数,a∈R.
(1)当a<0时,解不等式f(x)>0;
(2)当a=0时,求正整数k的值,使方程f(x)=x+2在[k,k+1]上有解;
(3)若f(x)在[-1,1]上是单调增函数,求a的取值范围.
答案
(1)因为ex>0,所以不等式f(x)>0即为ax2+x>0,
又因为a<0,所以不等式可化为x(x+
1
a
)<0,
所以不等式f(x)>0的解集为(0,-
1
a
).
(2)当a=0时,方程即为xex=x+2,由于ex>0,所以x=0不是方程的解
所以原方程等价于ex-
2
x
-1=0
,令h(x)=ex-
2
x
-1

因为h′(x)=ex+
2
x2
>0对于x∈(0,+∞)恒成立,
所以h(x)在(0,+∞)内是单调增函数,
又h(1)=e-3,h(2)=e2-2>0,
所以方程f(x)=x+2有且只有1个实数根,在区间[1,2],
所以正整数k的值为 1.
(3)f′(x)=(2ax+1)ex+(ax2+x)ex=[ax2+(2a+1)x+1]ex
①当a=0时,f′(x)=(x+1)ex,f′(x)≥0在[-1,1]上恒成立,当且仅当x=-1时取等号,故a=0符合要求;
②当a≠0时,令g(x)=ax2+(2a+1)x+1,因为△=(2a+1)2-4a=4a2+1>0,
所以g(x)=0有两个不相等的实数根x1,x2,不妨设x1>x2
因此f(x)有极大值又有极小值.
若a>0,因为g(-1)•g(0)=-a<0,所以f(x)在(-1,1)内有极值点,
故f(x)在[-1,1]上不单调.
若a<0,可知x1>0>x2
因为g(x)的图象开口向下,要使f(x)在[-1,1]上单调,因为g(0)=1>0,
必须满足





g(1)≥0
g(-1)≥0





3a+2≥0
-a≥0
,所以-
2
3
≤a<0

综上可知,a的取值范围是[-
2
3
,0
].
核心考点
试题【已知函数f(x)=(ax2+x)ex,其中e是自然数的底数,a∈R.(1)当a<0时,解不等式f(x)>0;(2)当a=0时,求正整数k的值,使方程f(x)=x】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
已知函数f(x)=lnx+ax-a2x2(a≥0).
(1)若x=1是函数y=f(x)的极值点,求a的值;
(2)求函数y=f(x)的单调区间.
题型:不详难度:| 查看答案
已知函数f(x)=x+x3,x∈R.
(1)判断函数f(x)的单调性,并证明你的结论;
(2)若a,b∈R,且a+b>0,试比较f(a)+f(b)与0的大小.
题型:不详难度:| 查看答案
已知函数,f(x)=





(x2-2ax)ex,x>0
bx,x≤0
,g(x)=clnx+b
,且x=


2
是函数y=f(x)的极值点.
(1)若方程f(x)-m=0有两个不相等的实数根,求实数m的取值范围;
(2)若直线L是函数y=f(x)的图象在点(2,f(2))处的切线,且直线L与函数Y=G(X)的图象相切于点P(x0,y0),x0∈[e-1,e],求实数b的取值范围.
题型:不详难度:| 查看答案
函数y=
lnx
x
的最大值为(  )
A.e-1B.eC.e2D.
10
3
题型:不详难度:| 查看答案
设函数y=f(x)(x∈R)是可导的函数,若满足(x-2)f′(x)≥0,则必有(  )
A.f(1)+f(3)≥2f(2)B.f(1)+f(3)≤2f(2)C.f(1)+f(3)<2f(2)D.f(1)+f(3)>2f(2)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.