当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知函数f(x)=2ax3+bx2-6x在x=±1处取得极值(1)讨论f(1)和f(-1)是函数f(x)的极大值还是极小值;(2)试求函数f(x)在x=-2处的...
题目
题型:不详难度:来源:
已知函数f(x)=2ax3+bx2-6x在x=±1处取得极值
(1)讨论f(1)和f(-1)是函数f(x)的极大值还是极小值;
(2)试求函数f(x)在x=-2处的切线方程;
(3)试求函数f(x)在区间[-3,2]上的最值.
答案
(1)f"(x)=6ax2+2bx-6,
在x=1处取得极值,则f′(1)=6a+2b-6=0;
在x=-1处取得极值,则f′(-1)=6a-2b-6=0;
解得a=1;b=0;
∴f(x)=2x3-6x;
f′(x)=6x2-6,
由f′(x)=6x2-6=0,得x=±1.
列表:
核心考点
试题【已知函数f(x)=2ax3+bx2-6x在x=±1处取得极值(1)讨论f(1)和f(-1)是函数f(x)的极大值还是极小值;(2)试求函数f(x)在x=-2处的】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
 x (-∞,-1)-1 (-1,1) 1 (1,+∞)
 f′(x)+ 0- 0+
 f(x) 极大值 极小值
已知函数f(x)=ax3+bx2+cx+d(a,b,c,d∈R)的图象与x轴交于A,B,C三点.若点B的坐标为(2,0),且函数f(x)在区间[-1,0]和[4,5]上有相同的单调性,在区间[0,2]和[4,5]上有相反的单调性.
(1)求c的值;
(2)求
b
a
的取值范围;
(3)求|AC|的最大值和最小值.
函数y=x-lnx的单调增区间是______.
设函数f(x)=(1+x)2-2ln(1+x).
(Ⅰ)求函数f(x)的单调增区间;
(Ⅱ)当x∈[
1
e
-1,e-1]
时,求f(x)的最大值.
已知函数f(x)=x3+ax2+bx+c,当x=-1,f(x)有极大值7;当x=3时,f(x)有极小值.
(Ⅰ)求a,b,c的值.
(Ⅱ)设g(x)=f(x)-ax2,求g(x)的单调区间.
若函数f(x)=x3-mx2+2m2-5的单调递减区间为(-9,0),则m=______.