当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知函数f(x)=ax3+bx2+cx+d(a,b,c,d∈R)的图象与x轴交于A,B,C三点.若点B的坐标为(2,0),且函数f(x)在区间[-1,0]和[4...
题目
题型:不详难度:来源:
已知函数f(x)=ax3+bx2+cx+d(a,b,c,d∈R)的图象与x轴交于A,B,C三点.若点B的坐标为(2,0),且函数f(x)在区间[-1,0]和[4,5]上有相同的单调性,在区间[0,2]和[4,5]上有相反的单调性.
(1)求c的值;
(2)求
b
a
的取值范围;
(3)求|AC|的最大值和最小值.
答案
(1)由条件可知f(x)在区间[-1,0]和[0,2]上有相反的单调性,
∴x=0是f(x)的一个极值点,
∴f′(0)=0
而f′(x)=3ax2+2bx+c,
故c=0.
(2)令f′(x)=0,则3ax2+2bx=0,
解得x1=0,x2=-
2b
3a

又f(x)在区间[0,2]和[4,5]上有相反的单调性,





-
2b
3a
≥2
-
2b
3a
≤4
解得-6≤
b
a
≤-3

(3)设A(α,0),C(β,0),
则由题意可令f(x)=a(x-α)(x-2)(x-β)=a[x3-(2+α+β)x2+(2α+2β+αβ)x-2αβ]…(2分)





b=-a(2+α+β)
d=-2aαβ
,解得





α+β=-
b
a
-2
αβ=-
d
2a

又∵函数f(x)的图象交x轴于B(2,0),
∴f(2)=0即8a+4b+d=0
∴d=-4(b+2a),
αβ=4+
2b
a

从而|AC|=|α-β|=


(α+β)2-4αβ
=


(
b
a
-2)
2
-16

-6≤
b
a
≤-3

∴当
b
a
=-6
时,|AC|max=4


3
;当
b
a
=-3
时,|AC|min=3.
核心考点
试题【已知函数f(x)=ax3+bx2+cx+d(a,b,c,d∈R)的图象与x轴交于A,B,C三点.若点B的坐标为(2,0),且函数f(x)在区间[-1,0]和[4】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
函数y=x-lnx的单调增区间是______.
题型:不详难度:| 查看答案
设函数f(x)=(1+x)2-2ln(1+x).
(Ⅰ)求函数f(x)的单调增区间;
(Ⅱ)当x∈[
1
e
-1,e-1]
时,求f(x)的最大值.
题型:不详难度:| 查看答案
已知函数f(x)=x3+ax2+bx+c,当x=-1,f(x)有极大值7;当x=3时,f(x)有极小值.
(Ⅰ)求a,b,c的值.
(Ⅱ)设g(x)=f(x)-ax2,求g(x)的单调区间.
题型:不详难度:| 查看答案
若函数f(x)=x3-mx2+2m2-5的单调递减区间为(-9,0),则m=______.
题型:不详难度:| 查看答案
已知函数f(x)=x3-
1
2
x2+bx+c
,且f(x)在x=1处取得极值.
(1)求b的值;
(2)若当x∈[-1,2]时,f(x)<c2恒成立,求c的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.