当前位置:初中试题 > 数学试题 > 图形的旋转 > 如图,将△ABC绕顶点A顺时针旋转60°后得到△AB′C′,且C′为BC的中点.若D为B′C′与AB的交点,则C′D:DB′=______....
题目
题型:不详难度:来源:
如图,将△ABC绕顶点A顺时针旋转60°后得到△AB′C′,且C′为BC的中点.若D为B′C′与AB的交点,则C′D:DB′=______.
答案
根据旋转的性质可知:AC=AC′,∠AC′B′=∠C=60°,
∵旋转角是60°,即∠C′AC=60°,
∴△ACC′为等边三角形,
∴BC′=CC′=AC,
∴∠B=∠C′AB=30°,
∴∠BDC′=∠C′AB+∠AC′B′=90°,
即B′C′⊥AB,
∴BC′=2C′D,
∴BC=B′C′=4C′D,
∴C′D:DB′=1:3,
故答案为1:3.
核心考点
试题【如图,将△ABC绕顶点A顺时针旋转60°后得到△AB′C′,且C′为BC的中点.若D为B′C′与AB的交点,则C′D:DB′=______.】;主要考察你对图形的旋转等知识点的理解。[详细]
举一反三
如图,把△ABC绕点C顺时针旋转25°,得到△A′B′C′,A′B′分别交AC、AB于点D、E,若∠A′DC=80°,则∠A=______°.
题型:不详难度:| 查看答案
将正方形ABCD中的△ABP绕点B顺时针旋转能与△CBP′重合,若BP=4,则PP′=______.
题型:不详难度:| 查看答案
四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.
(1)求证:△ADE≌△ABF;
(2)填空:△ABF可以由△ADE绕旋转中心______点,按顺时针方向旋转______度得到;
(3)若BC=8,DE=6,求△AEF的面积.
题型:不详难度:| 查看答案
如图,△ABC为等边三角形,四边形ABDE和四边形ACFG都是正方形.
(1)△ABG是怎样变换得到△AEC?请具体说明.
(2)证明:BG=CE.
题型:不详难度:| 查看答案
已知矩形ABCD的边AB=4,AD=3,现将矩形ABCD如图放在直线l上,且沿着l向右作无滑动地翻滚,当它翻滚到位置A1B1C1D1时,计算:

(1)顶点A所经过的路线长为______;
(2)点A经过的路线与直线l所围成的面积为______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.