当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知函数f(x)=13x3-x2+ax+b的图象在点P(0,f(0))处的切线方程为y=3x-2.(1)求实数a,b的值;(2)设g(x)=f(x)+mx-1是...
题目
题型:广元二模难度:来源:
已知函数f(x)=
1
3
x3-x2+ax+b
的图象在点P(0,f(0))处的切线方程为y=3x-2.
(1)求实数a,b的值;
(2)设g(x)=f(x)+
m
x-1
是[2,+∞)上的增函数.
①求实数m的最大值;
②当m取最大值时,是否存在点Q,使得过点Q的直线若能与曲线y=g(x)围成两个封闭图形,则这两个封闭图形的面积总相等?若存在,求出点Q的坐标;若不存在,说明理由.
答案
(1)求导函数可得f′(x)=x2-2x+a
∵函数在点P(0,f(0))处的切线方程为y=3x-2,∴





f′(0)=3
f(0)=-2
,∴





a=3
b=-2

(2)①由g(x)=f(x)+
m
x-1
=
1
3
x3-x2+3x-2+
m
x-1
,得g′(x)=x2-2x+3-
m
(x-1)2

∵g(x)是[2,+∞)上的增函数,∴g′(x)≥0在[2,+∞)上恒成立,
x2-2x+3-
m
(x-1)2
≥0
在[2,+∞)上恒成立.
设(x-1)2=t,∵x∈[2,+∞),∴t≥1,∴不等式t+2-
m
t
≥0在[1,+∞)上恒成立
当m≤0时,不等式t+2-
m
t
≥0在[1,+∞)上恒成立.
当m>0时,设y=t+2-
m
t
,t∈[1,+∞)
因为y′=1+
m
t2
>0,所以函数y=t+2-
m
t
在[1,+∞)上单调递增,因此ymin=3-m.
∴ymin≥0,∴3-m≥0,即m≤3,又m>0,故0<m≤3.
综上,m的最大值为3.
②由①得g(x)=
1
3
x3-x2+3x-2+
3
x-1
,其图象关于点Q(1,
1
3
)成中心对称.
证明如下:∵g(x)=
1
3
x3-x2+3x-2+
3
x-1

∴g(2-x)=
1
3
(2-x)3-(2-x)2+3(2-x)-2+
3
2-x-1
=-
1
3
x3+x2-3x+
8
3
+
3
1-x

因此,g(x)+g(2-x)=
2
3

∴函数g(x)的图象关于点Q成中心对称.
∴存在点Q(1,
1
3
),使得过点Q的直线若能与函数g(x)的图象围成两个封闭图形,则这两个封闭图形的面积总相等.
核心考点
试题【已知函数f(x)=13x3-x2+ax+b的图象在点P(0,f(0))处的切线方程为y=3x-2.(1)求实数a,b的值;(2)设g(x)=f(x)+mx-1是】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
已知函数 f(x)=2lnx+
1
2
ax2-(2a+1)x (a∈R)

(Ⅰ)当a=-
1
2
时,求函数f(x)在[1,e]上的最大值和最小值;
(Ⅱ)若a>0,讨论f(x)的单调性.
题型:丰台区二模难度:| 查看答案
已知函数f(x)=
1
x+a
,g(x)=bx2+3x.
(Ⅰ)若曲线h(x)=f(x)-g(x)在点(1,0)处的切线斜率为0,求a,b的值;
(Ⅱ)当a∈[3,+∞),且ab=8时,求函数φ(x)=
g(x)
f(x)
的单调区间,并求函数在区间[-2,-1]上的最小值.
题型:丰台区一模难度:| 查看答案
已知函数f(x)=ln(2+3x)-
3
2
x2

(1)求f(x)在[0,1]上的单调区间;
(2)若对任意x∈[
1
3
,1]
,不等式|a-f(x)|>ln5,求实数a的取值范围.
题型:不详难度:| 查看答案
设函数f(x)=x-
2
x
-alnx(a∈R).
(Ⅰ)当a=3时,求f(x)的极值;
(Ⅱ)讨论函数f(x)的单调性.
题型:滨州一模难度:| 查看答案
已知函数f(x)=lnx-ax2+(a-2)x.
(Ⅰ)若f(x)在x=1处取得极值,求a的值;
(Ⅱ)求函数y=f(x)在[a2,a]上的最大值.
题型:丰台区二模难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.