当前位置:高中试题 > 数学试题 > 常见函数的导数 > 已知函数在处取得的极小值是.(1)求的单调递增区间;(2)若时,有恒成立,求实数的取值范围....
题目
题型:不详难度:来源:
已知函数处取得的极小值是.
(1)求的单调递增区间;
(2)若时,有恒成立,求实数的取值范围.
答案
(1)的单调递增区间为.
(2).
解析
(1),由题意
的单调递增区间为.
(2) ,当变化时,的变化情况如下表:

- 4
(-4,-2)
-2
(-2,2)
2
(2,3)
3

 

   0

   0

 


单调递增

单调递减
  
单调递增
  1
 
所以时,.于是上恒成立等价于,求得.
核心考点
试题【已知函数在处取得的极小值是.(1)求的单调递增区间;(2)若时,有恒成立,求实数的取值范围.】;主要考察你对常见函数的导数等知识点的理解。[详细]
举一反三
已知函数在区间[0,1]上单调递增,在区间[1,2]上单调递减;
(1)求a的值;
(2)求证:x=1是该函数的一条对称轴;
(3)是否存在实数b,使函数的图象与函数f(x)的图象恰好有两个交点?若存在,求出b的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知函数,函数.
(1)当时,求函数f(x)的最小值;
(2)设函数h(x)=(1-x)f(x)+16,试根据m的取值分析函数h(x)的图象与函数g(x)的图象交点的个数.
题型:不详难度:| 查看答案
已知二次函数为常数);.若直线l1、l2与函数f(x)的图象以及l1,y轴与函数f(x)的图象所围成的封闭图形如阴影所示.
(Ⅰ)求a、b、c的值;
(Ⅱ)求阴影面积S关于t的函数S(t)的解析式;
(Ⅲ)若问是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有两个不同的交点?若存在,求出m的值;若不存在,说明理由.
题型:不详难度:| 查看答案
已知,点A(s,f(s)), B(t,f(t))
(I) 若,求函数的单调递增区间;
(II)若函数的导函数满足:当|x|≤1时,有||≤恒成立,求函数的解析表达式;
(III)若0<a<b, 函数处取得极值,且,证明:不可能垂直.
题型:不详难度:| 查看答案
已知函数
(1)设,当m≥时,求g(x)在[]上的最大值;
(2)若上是单调减函数,求实数m的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.