当前位置:高中试题 > 数学试题 > 数列综合 > 已知{an}是首项为a1=1的等差数列且满足an+1>an(n∈N*),等比数列{bn}的前三项分别为b1=a1+1,b2=a2+1,b3=a3+3.(Ⅰ)求数...
题目
题型:不详难度:来源:
已知{an}是首项为a1=1的等差数列且满足an+1>an(n∈N*),等比数列{bn}的前三项分别为b1=a1+1,b2=a2+1,b3=a3+3.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)若数列{cn}满足(an+3)cnlog2bn=
1
2
,求数列{cn}的前n项和Sn
答案
(Ⅰ)设等差数列{an}的公差为d,
首项a1=1,b1=2,b2=2+d,b3=4+2d,
∵{bn}为等比数列,∴
b22
=b1b3

即(2+d)2=2(4+2d),解得d=±2,
又∵an+1>an,即数列{an}为单调递增数列,
∴d=2,a2=3,a3=5,∴an=a1+(n-1)d=2n-1,
则b1=2,b2=4,q=2,
bn=b1qn-1=2n
∴an=2n-1,bn=2n
(Ⅱ)由题意得,(an+3)cnlog2bn=
1
2
,再由(1)结果代入,
变形得cn=
1
2(an+3)log2bn
=
1
2n(2n+2)
=
1
2
(
1
2n
-
1
2n+2
)

∴Sn=
1
2
(
1
2
-
1
4
)+
1
2
(
1
4
-
1
6
)+
1
2
(
1
6
-
1
8
)
+…+
1
2
(
1
2n
-
1
2n+2
)

=
1
2
(
1
2
-
1
2n+2
)
=
n
4(n+1)
核心考点
试题【已知{an}是首项为a1=1的等差数列且满足an+1>an(n∈N*),等比数列{bn}的前三项分别为b1=a1+1,b2=a2+1,b3=a3+3.(Ⅰ)求数】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
已知数列{an}中,a1=2,an+1-an-2n-2=0(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=
1
an+1
+
1
an+2
+
1
an+3
+…+
1
a2n
,若对任意的正整数n,当m∈[-1,1]时,不等式t2-2mt+
1
6
bn
恒成立,求实数t的取值范围.
题型:不详难度:| 查看答案
数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有2Sn=
a2n
+an

(Ⅰ)求数列{an}的通项公式;
(Ⅱ) 设正数数列{cn}满足an+1=(cn)n+1,(n∈N*),求数列{cn}中的最大项;
(Ⅲ) 求证:Tn=
1
a41
+
1
a42
+
1
a43
+…+
1
a4n
11
10
题型:不详难度:| 查看答案
在等比数列{an}中,an>0(n∈N*),且a1a3=4,a3+1是a2和a4的等差中项.
(I)求数列{an}的通项公式;
(II)若数列{bn}满足bn=an+1+log2an(n=1,2,3…),求数列{bn}的前n项和Sn
题型:不详难度:| 查看答案
.在等比数列{an}中,an>0(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,又2是a3与a5的等比中项.设bn=5-log2an
(1)求数列{bn}的通项公式;
(2)已知数列{bn}的前n项和为SnTn=
1
S1
+
1
S2
+…+
1
Sn
,求Tn
题型:不详难度:| 查看答案
对于一切实数x,令[x]为不大于x的最大整数,则函数f(x)=[x]为高斯实数或取实数,若an=f(
n
3
),n∈N*
,Sn为数列{an}的前n项和,则S3n=______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.