当前位置:高中试题 > 数学试题 > 数列综合 > 数列11+2,11+2+3,…11+2+…+n的前n项和为(  )A.nn+1B.2nn+1C.nn+2D.n2(n+1)...
题目
题型:不详难度:来源:
数列
1
1+2
1
1+2+3
,…
1
1+2+…+n
的前n项和为(  )
A.
n
n+1
B.
2n
n+1
C.
n
n+2
D.
n
2(n+1)
答案
由数列可知数列的通项公式an=
1
1+2+…+(n+1)
=
1
(n+1)(n+2)
2
=
2
(n+1)(n+2)
=2(
1
n+1
-
1
n+2
)

∴数列的前n项和S=2(
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n+1
-
1
n+2
)=2(
1
2
-
1
n+2
)=
n
n+2

故选:C.
核心考点
试题【数列11+2,11+2+3,…11+2+…+n的前n项和为(  )A.nn+1B.2nn+1C.nn+2D.n2(n+1)】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
已知数列{an}是等差数列,且a1=1,a1+a2+a3=6.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=an2n.求数列{bn}前n项和的公式.
题型:不详难度:| 查看答案
已知{an}是递增的等差数列,它的前三项的和为-3,前三项的积为8.
(1)求数列{an}的通项公式;
(2)求数列{|an|}的前n项和Sn
题型:不详难度:| 查看答案
在等比数列{an}中,已知a3=
3
2
,S3=
9
2

(1)求{an}的通项公式;
(2)求和Sn=a1+2a2+…+nan
题型:不详难度:| 查看答案
设等差数列{an}的前n项和为Sn,已知a3=9,S6=66.
(1)求数列{an}的通项公式an及前n项的和Sn
(2)设数列{
1
anan+1
}
的前n项和为Tn,证明:Tn
1
4
题型:不详难度:| 查看答案
设数列{an}是有穷等差数列,给出下面数表:
a1 a2a3 …an-1  an第1行
a1+a2 a2+a3 …an-1+an 第2行


…第n行
上表共有n行,其中第1行的n个数为a1,a2,a3…an,从第二行起,每行中的每一个数都等于它肩上两数之和.记表中各行的数的平均数(按自上而下的顺序)分别为b1,b2,b3…bn
(1)求证:数列b1,b2,b3…bn成等比数列;
(2)若ak=2k-1(k=1,2,…,n),求和
n
k=1
akbk
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.