当前位置:高中试题 > 数学试题 > 数列综合 > 设等差数列{an}的前n项和为Sn,已知a3=9,S6=66.(1)求数列{an}的通项公式an及前n项的和Sn;(2)设数列{1anan+1}的前n项和为Tn...
题目
题型:不详难度:来源:
设等差数列{an}的前n项和为Sn,已知a3=9,S6=66.
(1)求数列{an}的通项公式an及前n项的和Sn
(2)设数列{
1
anan+1
}
的前n项和为Tn,证明:Tn
1
4
答案
(1)设等差数列{an}的公差为d,
由题意可得





a3=a1+2d=9
S6=6a1+
6×5
2
d=66

解之可得a1=1,d=4,故an=1+4(n-1)=4n-3,
所以Sn=
n(a1+an)
2
=
n(1+4n-3)
2
=2n2-n;
(2)由(1)可知
1
anan+1
=
1
(4n-3)(4n-1)
=
1
4
1
4n-3
-
1
4n+1
),
故Tn=
1
4
[(1-
1
5
)+(
1
5
-
1
9
)+…+(
1
4n-3
-
1
4n+1
)]
=
1
4
(1-
1
4n+1
)=
n
4n+1
n
4n
=
1
4
,命题得证.
核心考点
试题【设等差数列{an}的前n项和为Sn,已知a3=9,S6=66.(1)求数列{an}的通项公式an及前n项的和Sn;(2)设数列{1anan+1}的前n项和为Tn】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
设数列{an}是有穷等差数列,给出下面数表:
a1 a2a3 …an-1  an第1行
a1+a2 a2+a3 …an-1+an 第2行


…第n行
上表共有n行,其中第1行的n个数为a1,a2,a3…an,从第二行起,每行中的每一个数都等于它肩上两数之和.记表中各行的数的平均数(按自上而下的顺序)分别为b1,b2,b3…bn
(1)求证:数列b1,b2,b3…bn成等比数列;
(2)若ak=2k-1(k=1,2,…,n),求和
n
k=1
akbk
题型:不详难度:| 查看答案
数列{an}的通项公式为an=(-1)n-1(4n-3),则S100等于______.
题型:不详难度:| 查看答案
数列{an}是等差数列,Sn是前n项和,a4=3,S5=25
(1)求数列{an}的通项公式an
(2)设bn=|an|,求b1+b2+…+bn
题型:不详难度:| 查看答案
已知函数f(x)=(
1
3
)x
,等比数列{an}的前n项和为f(n)-c,正项数列{bn}的首项为c,且前n项和Sn满足Sn-Sn-1=


Sn
+


Sn-1
(n≥2).
(1)求数列{an}的通项公式;
(2)证明数列{


Sn
}是等差数列,并求Sn
(3)若数列{
1
bnbn+1
}前n项和为Tn,问Tn
1000
2009
的最小正整数n是多少?
(4)设cn=
2bn
an
,求数列{cn}的前n项和Pn
题型:不详难度:| 查看答案
观察下列程序框图(如图),输出的结果是(  )(可能用的公式12+22+…+n2=
1
6
n(n+1)(2n+1),n∈N*)
A.328350B.338350C.348551D.318549
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.