当前位置:高中试题 > 数学试题 > 等差数列 > 一个凸多边形各个内角的度数组成公差为5°的等差数列,且最小内角为120°,则此多边形为 ______边形....
题目
题型:不详难度:来源:
一个凸多边形各个内角的度数组成公差为5°的等差数列,且最小内角为120°,则此多边形为 ______边形.
答案
设这是个n边形,因为最小的角等于120°,公差等差等于5°,
则n个外角的度数依次是60,55,50,…,60-5(n-1),
由于任意多边形的外角和都等于360°,所以60+55+50+…+[60-5(n-1)]=360,
1
2
n{60+[60-5(n-1)]}=360,
-5n2+125n-720=0
n2-25n+144=0
n=9或n=16,经检验n=16不符合题意,舍去,所以n=9,这是个9边形.
故答案:九.
核心考点
试题【一个凸多边形各个内角的度数组成公差为5°的等差数列,且最小内角为120°,则此多边形为 ______边形.】;主要考察你对等差数列等知识点的理解。[详细]
举一反三
已知等比数列{an}满足a1+a6=11,且a3a4=
32
9

(1)求数列{an}的通项an
(2)如果至少存在一个自然数m,恰使
2
3
am-1
am2,am+1+
4
9
这三个数依次成等差数列,问这样的等比数列{an}是否存在?若存在,求出通项公式;若不存在,请说明理由.
题型:不详难度:| 查看答案
设{an}是递减的等差数列,前三项之和为12,前三项之积为48,则它的首项是(  )
A.2B.-2C.-4D.6
题型:不详难度:| 查看答案
已知数列{an},{bn}都是公差为1的等差数列,其首项分别为a1,b1,且a1+b1=5,a1,b1∈N*,设cn=abn(n∈N*),则数列{cn}的前10项和等于______.
题型:不详难度:| 查看答案
在等差数列{an}中,当ar=as(r≠s)时,{an}必定是常数数列.然而在等比数列{an}中,对某些正整数r、s(r≠s),当ar=as时,非常数数列{an}的一个例子是______.
题型:上海难度:| 查看答案
已知数列{an}为等差数列,其公差为d.
(Ⅰ)若a10=23,a25=-22,求数列{an}的通项公式;
(Ⅱ)若a2+a3+a4+a5=34,a2•a5=52,且d>0,求d及数列{an}的前20项的和S20
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.