当前位置:高中试题 > 数学试题 > 任意角三角函数的概念 > 设函数f(x)=(sinωx+cosωx)2+2cos2ωx(ω>0)的最小正周期为2π3.(Ⅰ)求ω的值;(Ⅱ)若函数y=g(x)的图象是由y=f(x)的图象...
题目
题型:重庆难度:来源:
设函数f(x)=(sinωx+cosωx)2+2cos2ωx(ω>0)的最小正周期为
3

(Ⅰ)求ω的值;
(Ⅱ)若函数y=g(x)的图象是由y=f(x)的图象向右平移
π
2
个单位长度得到,求y=g(x)的单调增区间.
答案
(Ⅰ)f(x)=(sinωx+cosωx)2+2cos2ωx=sin2ωx+cos2ωx+sin2ωx+1+2cos2ωx
=sin2ωx+cos2ωx+2=


2
sin(2ωx+
π
4
)+2

依题意得
=
3
,故ω的值为
3
2

(Ⅱ)依题意得:g(x)=


2
sin[3(x-
π
2
)+
π
4
]+2=


2
sin(3x-
4
)+2

2kπ-
π
2
≤3x-
4
≤2kπ+
π
2
(k∈Z)

解得
2
3
kπ+
π
4
≤x≤
2
3
kπ+
12
(k∈Z)

故y=g(x)的单调增区间为:[
2
3
kπ+
π
4
2
3
kπ+
12
](k∈Z)
核心考点
试题【设函数f(x)=(sinωx+cosωx)2+2cos2ωx(ω>0)的最小正周期为2π3.(Ⅰ)求ω的值;(Ⅱ)若函数y=g(x)的图象是由y=f(x)的图象】;主要考察你对任意角三角函数的概念等知识点的理解。[详细]
举一反三
设函数f(x)=2cos2x+


3
sin2x

(1)求f(x)的周期以及单调增区间;
(2)当f(x)=
5
3
(-
π
6
<x<
π
6
)
时,求sin2x.
题型:解答题难度:一般| 查看答案


a
=(


3
cosωx,sinωx),


b
=(sinωx,0)
,其中ω>0,函数f(x)=(


a
+


b
)•


b
+k

(1)若f(x)图象申相邻两条对称轴间的距离不小于
π
2
,求ω的取值范围.
(2)若f(x)的最小正周期为π,且当x∈[-
π
6
π
6
]
时,f(x)的最大值是
1
2
,求f(x)的解析式.
题型:解答题难度:一般| 查看答案
已知f(x)=cos
3x
2
cos
x
2
-sin
3x
2
sin
x
2
-2sinxcosx

(1)求函数f(x)的最小正周期;
(2)当x∈[
π
2
,π]
,求函数f(x)的零点.
题型:韶关三模难度:| 查看答案
已知函数f(x)=sin2ωx+


3
sinωxcosωx (ω>0)
的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)的单调递增区间.
题型:不详难度:| 查看答案
已知f (x)=


3
2
sin2x-cos2-
1
2
,(x∈R).
(Ⅰ)求函数f(x)的最小值和最小正周期;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c,且c=


3
,f (C)=0,若


m
=(1,sinA)与


n
=(2,sinB)共线,求a,b的值.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.