当前位置:高中试题 > 数学试题 > 二分法求函数零点 > 已知f(x)=x3-2x-5,f(2.5)>0,用“二分法”求方程x3-2x-5=0在区间(2,3)内的实根,取区间中点为x0=2.5,那么下一个有根的区间是_...
题目
题型:填空题难度:一般来源:不详
已知f(x)=x3-2x-5,f(2.5)>0,用“二分法”求方程x3-2x-5=0在区间(2,3)内的实根,取区间中点为x0=2.5,那么下一个有根的区间是______.
答案
由题意可得f(2.5)>0,f(2)=-1<0,
根据二分法求方程的近似解的方法和步骤可得,下一个有根的区间是(2,2.5),
故答案为 (2,2.5).
核心考点
试题【已知f(x)=x3-2x-5,f(2.5)>0,用“二分法”求方程x3-2x-5=0在区间(2,3)内的实根,取区间中点为x0=2.5,那么下一个有根的区间是_】;主要考察你对二分法求函数零点等知识点的理解。[详细]
举一反三
用二分法求方程x3-2x-5=0在区间(2,4)上的实数根时,取中点x1=3,则下一个有根区间是______.
题型:填空题难度:简单| 查看答案
已知f(x)的图象是一条连续不断的曲线,且在区间(a,b)内有唯一零点x0,用二分法求得一系列含零点x0的区间,这些区间满足:(a,b)
(a1b1)
(a2b2)
(akbk)
,若f(a)<0,f(b)>0,则f(bk)的符号为(  )
A.正B.负
C.非负D.正、负、零均有可能
题型:单选题难度:简单| 查看答案
用二分法研究方程lnx+2x-6=0的一个近似解x=x0的问题.
(1)若借助计算器,算得
第一次:f(2)<0,f(3)>0⇒x0∈______;
第二次:______;
第三次:f(2.5)<0,f(2.75)>0⇒x0∈(2.5,2.75);
第四次:f(2.5)<0,f(2.625)>0⇒x0∈(2.5,2.625);
第五次:f(2.5)<0,f(2.5625)>0⇒x0∈(2.5,2.5625);
第六次:f(2.53125)<0,f(2.5625)>0⇒x0∈(2.53125,2.5625);

(2)若精确度为0.1,至少需算______次,近似解x0=______.
题型:填空题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.