当前位置:高中试题 > 数学试题 > 函数的零点 > 若函数f(x)=x3-ax2(a>0)在区间上是单调增函数,则使方程f(x)=1 000有整数解的实数a的个数是________....
题目
题型:填空题难度:一般来源:不详
若函数f(x)=x3-ax2(a>0)在区间上是单调增函数,则使方程f(x)=1 000有整数解的实数a的个数是________.
答案
4
解析
令f′(x)=3x2-2ax>0,则x>或x<0.
由f(x)在区间上是单调增函数知,从而a∈(0,10].由f(x)=1 000得a=x-,令g(x)=x-,则g(x)在(0,+∞)上单调递增,且与x轴交于点(10,0),在同一直角坐标系中作出函数g(x)与y=a(0<a≤10)的大致图像(如图所示).当a=10时,由f(x)=1 000得x3-10x2-1 000=0.令h(x)=x3-10x2-1 000,因为h(14)=-216<0,h(15)=125>0,所以方程x3-10x2-1 000=0在区间(14,15)上存在根x0,因此从图像可以看出在(10,x0]之间f(x)=1 000共有4个整数解.

核心考点
试题【若函数f(x)=x3-ax2(a>0)在区间上是单调增函数,则使方程f(x)=1 000有整数解的实数a的个数是________.】;主要考察你对函数的零点等知识点的理解。[详细]
举一反三
已知函数,集合,记分别为集合中的元素个数,那么下列结论不正确的是(  )
A.B.
C.D.

题型:单选题难度:一般| 查看答案
已知函数的定义域[-1,5],部分对应值如表,的导函数的图象如图所示,下列关于函数的命题:

①函数的值域为
②函数上是减函数;
③当时,函数最多有4个零点;
④如果当时,的最大值是2,那么的最大值为4.
其中正确命题的序号是(写出所有正确命题的序号)      .
题型:填空题难度:一般| 查看答案
已知函数f(x)=|ax-2|+bln x(x>0,实数a,b为常数).
(1)若a=1,f(x)在(0,+∞)上是单调增函数,求b的取值范围;
(2)若a≥2,b=1,求方程f(x)=在(0,1]上解的个数.
题型:解答题难度:一般| 查看答案
已知函数f(x)=x2-2acos kπ·ln x(k∈N*,a∈R,且a>0).
(1)讨论函数f(x)的单调性;
(2)若k=2 04,关于x的方程f(x)=2ax有唯一解,求a的值.
题型:解答题难度:一般| 查看答案
已知函数f(x)=x+sin x.
(1)设P,Q是函数f(x)图像上相异的两点,证明:直线PQ的斜率大于0;
(2)求实数a的取值范围,使不等式f(x)≥axcos x在上恒成立.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.