当前位置:高中试题 > 数学试题 > 二次函数的图象和性质 > 设二次函数f(x)的图象关于直线x=1对称,并且当x>1时f(x)是增函数,又设a=f(1-π),b=f(π-1),c=f(5),则实数a、b、c的关系是(  ...
题目
题型:单选题难度:简单来源:不详
设二次函数f(x)的图象关于直线x=1对称,并且当x>1时f(x)是增函数,又设a=f(1-π),b=f(π-1),c=f(


5
),则实数a、b、c的关系是(  )
A.a=b>cB.a>c>bC.c>b>aD.c>a=b
答案
因为二次函数f(x)的图象关于直线x=1对称,所以f(1-π)=f(1+π),
因为π-1<


5
<1+π,且当x>1时f(x)是增函数,所以f(π-1)<f(


5
)<f(1+π),
即a>c>b.
故选B.
核心考点
试题【设二次函数f(x)的图象关于直线x=1对称,并且当x>1时f(x)是增函数,又设a=f(1-π),b=f(π-1),c=f(5),则实数a、b、c的关系是(  】;主要考察你对二次函数的图象和性质等知识点的理解。[详细]
举一反三
已知二次函数f(x)=ax2+bx+c满足f(1)=0.
(I)若a>b>c,证明f(x)的图象与x轴有两个交点,且这两个交点间的距离d满足:
3
2
<d<3;
(Ⅱ)设f(x)在x=
t+1
2
(t>0,t≠1)处取得最小值,且对任意实数x,等式f(x)g(x)+anx+bn=xn+1(其中n∈N,g(x)=x2+x+1)都成立,若数列{cn}的前n项和为bn,求{cn}的通项公式.
题型:解答题难度:一般| 查看答案
已知函数f(x)=ax2-2ax+2+b(a≠0)在[2.3]上有最大值5和最小值2,求a和b的值.
题型:解答题难度:一般| 查看答案
设f(x)=ax2+(b-1)x-a-ab,不等式f(x)>0的解集是(-2,0).
(1)求a,b的值;
(2)求函数g(x)=
f(x)
x2+x-2
在[2,4]上的最大值和最小值.
题型:解答题难度:一般| 查看答案
设二次函数f(x)=ax2+bx+c(a≠0)满足条件:①当x∈R时,f(x-4)=f(2-x),且x≤f(x)≤
1
2
(1+x2)
;②f(x)在R上的最小值为0.
(1)求f(1)的值及f(x)的解析式;
(2)若g(x)=f(x)-k2x在[-1,1]上是单调函数,求k的取值范围;
(3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.
题型:解答题难度:一般| 查看答案
已知函数f(x)=ax2+bx+1,(a,b是实数),x∈R,F(x)=





f(x),(x>0)
-f(x),(x<0)

(1)若f(-1)=0并且函数f(x)的值域为[0,+∞),求函数F(x)的表达式;
(2)在(1)的条件下,当x∈[-2,3]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.