当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知函数f(x)=x+2a2x-alnx  (a∈R).(1)讨论函数y=f(x)的单调区间;(2)设g(x)=x2-2bx+4-ln2,当a=1时,若对任意的...
题目
题型:解答题难度:一般来源:不详
已知函数f(x)=x+
2a2
x
-alnx  (a∈R)

(1)讨论函数y=f(x)的单调区间;
(2)设g(x)=x2-2bx+4-ln2,当a=1时,若对任意的x1,x2∈[1,e](e是自然对数的底数),f(x1)≥g(x2),求实数b的取值范围.
答案
(1)因为f(x)=x+
2a2
x
-alnx(x>0)
,所以f′(x)=1-
2a2
x2
-
a
x
=
x2-ax-2a2
x2
=
(x+a)(x-2a)
x2

①若a=0,f(x)=x,f(x)在(0,+∞)上单调递减.
②若a>0,当x∈(0,2a)时,f′(x)<0,f(x)在(0,2a)上单调递减;当x∈(2a,+∞)时,f′(x)>0,f(x)在(2a,+∞)上单调递增.
③若a<0,当x∈(0,-a)时,f′(x)<0,f(x)在(0,-a)上单调递减;当x∈(-a,+∞)时,f′(x)>0,f(x)在(-a,+∞)上单调递增.
综上:①当a=0时,f(x)在(0,+∞)上单调递增.
②当a>0时,f(x)在(0,2a)上单调递减,在(2a,+∞)上单调递增.
③当a<0时,f(x)在(0,-a)上单调递减,在(-a,+∞)上单调递增.
(2)当a=1时,f(x)=x+
2
x
-lnx(x>0)

由(1)知,若a=1,当x∈(0,2)时,f(x)单调递减,当x∈(2,+∞)时,f(x)单调递增,
所以f(x)min=f(2)=3-ln2.
因为对任意的x1,x2∈[1,e],都有f(x1)≥g(x2)成立,
所以问题等价于对于任意x∈[1,e],f(x)min≥g(x)恒成立,
即3-ln2≥x2-2bx+4-ln2对于任意x∈[1,e]恒成立,
即2b≥x+
1
x
对于任意x∈[1,e]恒成立,
因为函数y=x+
1
x
的导数y′=1-
1
x2
≥0
在[1,e]上恒成立,
所以函数y=x+
1
x
在[1,e]上单调递增,所以(x+
1
x
)max=e+
1
e

所以2b≥e+
1
e
,所以b
e
2
+
1
2e

故实数b的取值范围为[
e
2
+
1
2e
,+∞
).
核心考点
试题【已知函数f(x)=x+2a2x-alnx  (a∈R).(1)讨论函数y=f(x)的单调区间;(2)设g(x)=x2-2bx+4-ln2,当a=1时,若对任意的】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
设周期函数f(x)是定义在R上的奇函数,若f(x)的最小正周期为3,且满足f(1)>-2,f(2)=m-
3
m
,则m的取值范围是______.
题型:填空题难度:一般| 查看答案
定义在实数集上的偶函数f(x),满足f(x+2)=f(x),且f(x)在[-3,-2]上单调减,又α、β是锐角三角形的二个内角,则f(sinα)与f(cosβ) 的关系是______.(用>,<,≥,≤表示).
题型:填空题难度:一般| 查看答案
已知函数f(x)=log4(4x+1)+kx(k∈R)为偶函数.
(Ⅰ) 求k的值;
(Ⅱ) 若方程f(x)=log4(a•2x-a)有且只有一个实数解,求实数a的取值范围.
题型:解答题难度:一般| 查看答案
设f(x)是偶函数,且当x≥0时,f(x)=





x(3-x),0≤x≤3
(x-3)(a-x),x>3

(1)当x<0时,求f(x)的解析式;
(2)设函数f(x)在区间[-5,5]上的最大值为g(a),试求g(a)的表达式.
题型:解答题难度:一般| 查看答案
下列几个命题:
①方程x2+(a-3)x+a=0有一个正实根,一个负实根,则a<0;
②函数y=


x2-1
+


1-x2
是偶函数,但不是奇函数;
③曲线y=|3-x2|和直线y=a(a∈R)的公共点个数是m,则m的值不可能是1.
其中正确的有______.(填序号)
题型:填空题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.