当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)-g(x)=(x+12)2+1x,则当1<x1<x2时,有(  )A.g(1)<f(x1)<f...
题目
题型:单选题难度:简单来源:不详
若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)-g(x)=(x+
1
2
)2+
1
x
,则当1<x1<x2时,有(  )
A.g(1)<f(x1)<f(x2B.g(1)<f(x2)<f(x1C.f(x1)<g(1)<f(x2D.f(x1)<f(x2)<g(1)
答案
f(x)-g(x)=(x+
1
2
)
2
+
1
x
   ①,
令x=-x代入①得:f(-x)-g(-x)=(-x+
1
2
)
2
-
1
x

∵f(x),g(x)分别是R上的奇函数、偶函数,
-f(x)-g(x)=(-x+
1
2
)
2
-
1
x
   ②,
由①②得,f(x)=x+
1
x
-
1
4
g(x)=-x2-
1
2

g(1)=-1-
1
2
=-
3
2

∵当x>0时,f(x)=x+
1
x
-
1
4
≥2-
1
4
=
7
4
当且仅当x=1时取等号,且在(1,+∞)上递增,
∴1<x1<x2时,有f(x2)>f(x1)>f(1)=
7
4

则g(1)<f(x1)<f(x2),
故选A.
核心考点
试题【若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)-g(x)=(x+12)2+1x,则当1<x1<x2时,有(  )A.g(1)<f(x1)<f】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
已知函数f(x)对一切x,y都有f(ab)=bf(a)+af(b)
(1)求f(0);
(2)求证:f(x)是奇函数;
(3)若F(x)=af(x)+bx5+cx3+2x2+dx+3,已知F(-5)=7,求F(5)
题型:解答题难度:一般| 查看答案
定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞)(x1≠x2),有
f(x2)-f(x1)
x2-x1
<0
,设a=f(-2),b=f(1),c=f(3),则a,b,c由小到大依次为______.
题型:填空题难度:简单| 查看答案
函数f(x)为奇函数,且在区间[2,5]上为减函数并有最小值为2,则函数f(x)在区间[-5,-2]上为(  )
A.减函数且最小值为-2B.减函数且最大值为-2
C.增函数且最小值为-2D.增函数且最大值为-2
题型:单选题难度:简单| 查看答案
已知y=f(x)是奇函数,当0≤x≤4时,f(x)=x2-2x,则当-4≤x≤0时,f(x)的解析式是(  )
A.x2-2xB.-x2-2xC.-x2+2xD.x2+2x
题型:单选题难度:简单| 查看答案
已知定义域为(-∞,0)∪(0,+∞)的偶函数g(x)在(-∞,0)内为单调递减函数,且g(x•y)=g(x)+g(y)对任意的x,y都成立,g(2)=1.
(1)证明g(x)在(0,+∞)内为单调递增函数
(2)求g(4)的值;
(3)求满足条件g(x)>g(x+1)+2的x的取值范围.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.