当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 设函数f(x)=ax3-2bx2+cx+4d,(a,b,c,d∈R)的图象关于原点对称,且x=1时,f(x)取极小值-13.(Ⅰ)求a,b,c,d的值;(Ⅱ)当...
题目
题型:解答题难度:一般来源:不详
设函数f(x)=ax3-2bx2+cx+4d,(a,b,c,d∈R)的图象关于原点对称,且x=1时,f(x)取极小值-
1
3

(Ⅰ)求a,b,c,d的值;
(Ⅱ)当x∈[-1,1]时,图象上是否存在两点,使两点处的切线互相垂直?试证明你的结论;
(Ⅲ)若x1,x2∈[-1,1],求证:|f(x1)-f(x2)|≤
4
3
答案
(I)因为图象关于原点对称,所以f(x)为奇函数,所以b=0,d=0
所以f(x)=ax3+cx,因此f"(x)=3ax2+c
由题意得





f(1)=a+c=-
1
3
f′(1)=3a+c=0

解得a=
1
6
,c=-
1
2

(II)不存在.
证明:假设存在x1,x2,则f"(x1)•f"(x2)=-1
所以(x12-1)(x22-1)=-4
因为x1,x2∈[-1,1]所以x12-1,x22-1∈[-1,0]
因此(x12-1)(x22-1)≠-4
所以不存在.
(III)证明:f′(x)=
1
2
x2-
1
2

f′(x)=
1
2
x2-
1
2
=0得x=±1fmin(x)=f(1)=-
1
3
fmax(x)=f(-1)=
1
3

所以|f(x1)-f(x2)|≤fmax(x)-fmin(x)=f(-1)-f(1)=
2
3
4
3
核心考点
试题【设函数f(x)=ax3-2bx2+cx+4d,(a,b,c,d∈R)的图象关于原点对称,且x=1时,f(x)取极小值-13.(Ⅰ)求a,b,c,d的值;(Ⅱ)当】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
设函数f(x)=


a2-x2
|x+a|+a
.(a∈R且a≠0)
(1)分别判断当a=1及a=-2时函数的奇偶性.
(2)在a∈R且a≠0的条件下,将(1)的结论加以推广,使命题(1)成为推广后命题的特例,并对推广的结论加以证明.
题型:解答题难度:一般| 查看答案
已知函数y=f(x),若存在x0,使得f(x0)=x0,则x0称是函数y=f(x)的一个不动点,设f(x)=
-2x+3
2x-7

(1)求函数y=f(x)的不动点;
(2)对(1)中的二个不动点a、b(假设a>b),求使
f(x)-a
f(x)-b
=k•
x-a
x-b
恒成立的常数k的值;
(3)对由a1=1,an=f(an-1)定义的数列{an},求其通项公式an
题型:解答题难度:一般| 查看答案
已知函数f(x)=
x2+ax+4
x
(x≠0)

(1)若f(x)为奇函数,求a的值;
(2)若f(x)在[3,+∞)上恒大于0,求a的取值范围.
题型:解答题难度:一般| 查看答案
f(x)=
x3
3
,对任意实数t,记gt(x)=t
2
3
x-
2
3
t

(I)求函数y=f(x)-g8(x)的单调区间;
(II)求证:(ⅰ)当x>0时,f(x)≥gt(x)对任意正实数t成立;
(ⅱ)有且仅有一个正实数x0,使得g8(x0)≥gt(x0)对任意正实数t成立.
题型:解答题难度:一般| 查看答案
已知二次函数f(x)=ax2+bx+c(a>0,c>0)的图象与x轴有两个不同的公共点,且有f(c)=0,当0<x<c时,恒有f(x)>0.
(1)(文)当a=1,c=
1
2
时,求出不等式f(x)<0的解;
(2)(理)求出不等式f(x)<0的解(用a,c表示);
(3)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,求a的取值范围;
(4)若f(0)=1,且f(x)≤m2-2km+1,对所有x∈[0,c],k∈[-1,1]恒成立,求实数m的取值范围.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.