当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知函数f(x)=3x2-6x-5.(1)求不等式f(x)>4的解集;(2)设g(x)=f(x)-2x2+mx,其中m∈R,求g(x)在区间[l,3]上的最小值...
题目
题型:解答题难度:一般来源:不详
已知函数f(x)=3x2-6x-5.
(1)求不等式f(x)>4的解集;
(2)设g(x)=f(x)-2x2+mx,其中m∈R,求g(x)在区间[l,3]上的最小值;
(3)若对于任意的a∈[1,2],关于x的不等式f(x)≤x2-(2a+6)x+a+b在区间[1,3]上恒成立,求实数b的取值范围.
答案
(1)不等式 f(x)>4
即3x2-6x-9>0
解得x>3,或x<-1
∴不等式 f(x)>4的解集为(-∞,-1)∪(3,+∞)
(2)g(x)=f(x)-2x2+mx=x2+(m-6)x-5
其图象是开口朝上,且以x=
6-m
2
为对称轴的抛物线
6-m
2
>3,即m<0时,g(x)的最小值为g(3)=3m-14
当1≤
6-m
2
≤3,即0≤m≤4时,g(x)的最小值为g(
6-m
2
)=
-m2+12m-56
4

6-m
2
<1,即m>4时,g(x)的最小值为g(1)=m-10
(3)若不等式f(x)<x2-(2a+6)x+a+b在x∈[1,3]上恒成立,
即不等式2x2+2ax-5-a-b<0在x∈[1,3]上恒成立,
令h(x)=2x2+2ax-5-a-b
∵a∈[1,2],故h(x)图象的对称轴x=-
a
2
∈[-1,-
1
2
]
∴当x=3时,函数h(x)取最大值5a-b+13
故只须a∈[1,2]时,5a-b+13≤0恒成立即可;
即当a∈[1,2]时,b≥5a+13恒成立,
∴实数b的取值范围是[23,+∞)
核心考点
试题【已知函数f(x)=3x2-6x-5.(1)求不等式f(x)>4的解集;(2)设g(x)=f(x)-2x2+mx,其中m∈R,求g(x)在区间[l,3]上的最小值】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
已知函数f(x)是定义在(-2,2)上的减函数,且为奇函数.使 f(m)+f(2m-1)>0.求实数m的取值范围.
题型:解答题难度:一般| 查看答案
设f(x)是定义在R上的增函数,且对于任意的x都有f(-x)+f(x)=0恒成立.如果实数m、n满足不等式f(m2-6m+21)+f(n2-8n)<0,那么m2+n2 的取值范围是(  )
A.(9,49)B.(13,49)C.(9,25)D.(3,7)
题型:单选题难度:一般| 查看答案
已知任意数x满足f(x)为奇函数,g(x)为偶函数,且x>0时,f′(x)>0,g′(x)>0,则x<0时(  )
A.f′(x)>0,g′(x)>0B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0D.f′(x)<0,g′(x)<0
题型:单选题难度:一般| 查看答案
已知奇函数f(x)在[0,+∞)单调递增,则满足f(2x-1)<f(x2-x+1)的x的取值范围是(  )
A.(-∞,1)∪(2,+∞)B.(-∞,-2)∪(-1,+∞)
C.(1,2)D.(-2,-1)
题型:单选题难度:简单| 查看答案
已知函数f(x)=x(lnx+m),g(x)=
a
3
x3+x

(1)当m=-2时,求f(x)的单调区间;
(2)若m=
3
2
时,不等式g(x)≥f(x)恒成立,求实数a的取值范围.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.