当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 设f(x)是定义在R上的增函数,且对于任意的x都有f(-x)+f(x)=0恒成立.如果实数m、n满足不等式f(m2-6m+21)+f(n2-8n)<0,那么m2...
题目
题型:单选题难度:一般来源:长春模拟
设f(x)是定义在R上的增函数,且对于任意的x都有f(-x)+f(x)=0恒成立.如果实数m、n满足不等式f(m2-6m+21)+f(n2-8n)<0,那么m2+n2 的取值范围是(  )
A.(9,49)B.(13,49)C.(9,25)D.(3,7)
答案
∵对于任意的x都有f(-x)+f(x)=0恒成立
∴f(-x)=-f(x)
∵f(m2-6m+21)+f(n2-8n)<0,
∴f(m2-6m+21)<-f(n2-8n)=f(-n2+8n),
∵f(x)是定义在R上的增函数,
∴m2-6m+21<-n2+8n
∴(m-3)2+(n-4)2<4
∵(m-3)2+(n-4)2=4的圆心坐标为:(3,4),半径为2
∴(m-3)2+(n-4)2=4内的点到原点距离的取值范围为(5-2,5+2),即(3,7)
∵m2+n2 表示(m-3)2+(n-4)2=4内的点到原点距离的平方
∴m2+n2 的取值范围是(9,49).
故选A.
核心考点
试题【设f(x)是定义在R上的增函数,且对于任意的x都有f(-x)+f(x)=0恒成立.如果实数m、n满足不等式f(m2-6m+21)+f(n2-8n)<0,那么m2】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
已知任意数x满足f(x)为奇函数,g(x)为偶函数,且x>0时,f′(x)>0,g′(x)>0,则x<0时(  )
A.f′(x)>0,g′(x)>0B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0D.f′(x)<0,g′(x)<0
题型:单选题难度:一般| 查看答案
已知奇函数f(x)在[0,+∞)单调递增,则满足f(2x-1)<f(x2-x+1)的x的取值范围是(  )
A.(-∞,1)∪(2,+∞)B.(-∞,-2)∪(-1,+∞)
C.(1,2)D.(-2,-1)
题型:单选题难度:简单| 查看答案
已知函数f(x)=x(lnx+m),g(x)=
a
3
x3+x

(1)当m=-2时,求f(x)的单调区间;
(2)若m=
3
2
时,不等式g(x)≥f(x)恒成立,求实数a的取值范围.
题型:解答题难度:一般| 查看答案
已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<ex的解集为(  )
A.(-2,+∞)B.(0,+∞)C.(1,+∞)D.(4,+∞)
题型:单选题难度:一般| 查看答案
已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=2x,则f(-3)的值是(  )
A.
1
8
B.-
1
8
C.8D.-8
题型:单选题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.