当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x,若f(2-a2)>f(a),则实数a的取值范围是(  )A.(-∞,-1)∪(2,+∞)B....
题目
题型:单选题难度:简单来源:不详
已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x,若f(2-a2)>f(a),则实数a的取值范围是(  )
A.(-∞,-1)∪(2,+∞)B.(-2,1)C.(-1,2)D.(-∞,-2)∪(1,+∞)
答案
∵f(x)=x2+2x=(x+1)2-1在(0,+∞)上单调递增
又∵f(x)是定义在R上的奇函数
根据奇函数的对称区间上的单调性可知,f(x)在(-∞,0)上单调递增
∴f(x)在R上单调递增
∵f(2-a2)>f(a)
∴2-a2>a
解不等式可得,-2<a<1
故选B
核心考点
试题【已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x,若f(2-a2)>f(a),则实数a的取值范围是(  )A.(-∞,-1)∪(2,+∞)B.】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
已知函数f(x)是区间D⊆[0,+∞)上的增函数,若f(x)可表示为f(x)=f1(x)+f2(x),且满足下列条件:①f1(x)是D上的增函数;②f2(x)是D上的减函数;③函数f2(x)的值域A⊆[0,+∞),则称函数f(x)是区间D上的“偏增函数”.
(1)(i) 问函数y=sinx+cosx是否是区间(0,
π
4
)
上的“偏增函数”?并说明理由;
(ii)证明函数y=sinx是区间(0,
π
4
)
上的“偏增函数”.
(2)证明:对任意的一次函数f(x)=kx+b(k>0),必存在一个区间D⊆[0,+∞),使f(x)为D上的“偏增函数”.
题型:解答题难度:一般| 查看答案
已知函数f(x)=alnx+bx4-c(x>0)在x=1处取得极值-3-c,其中a,b,c为常数.
(1)试确定a,b的值;  
(2)讨论函数f(x)的单调区间;
(3)若对任意x>0,不等式f(x)≤-2c2恒成立,求c的取值范围.
题型:解答题难度:一般| 查看答案
已知函数f(x)=x2+
a
x
(x≠0,a∈R)
(Ⅰ)判断f(x)的奇偶性(直接写出你的结论)
(Ⅱ)若f(x)在[2,+∞)是增函数,求实数a的范围.
题型:解答题难度:一般| 查看答案
若不等式[(1-x)t-x]lgx<0对任意正整数t恒成立,则实数x的取值范围是(  )
A.{x|x>1}B.{x|0<x<
1
2
}
C.{x|0<x<
1
2
或x>1}
D.{x|0<x<
1
3
或x>1}
题型:单选题难度:简单| 查看答案
函数f(x)=
2x-1
2x+1
是(  )
A.奇函数B.偶函数
C.既是奇函数又是偶函数D.非奇非偶函数
题型:单选题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.