当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 已知f(1x)+2f(x)=x(x≠0)(1)求f(1)的值;    (2)求f(x)的表达式....
题目
题型:解答题难度:一般来源:不详
已知f(
1
x
)+2f(x)=x(x≠0)

(1)求f(1)的值;    
(2)求f(x)的表达式.
答案
(1)在中f(
1
x
)+2f(x)=x
,取x=1,得f(1)+2f(1)=1
所以f(1)=
1
3

(2)令t=
1
x
,则x=
1
t

代入f(
1
x
)+2f(x)=x
      ①
得:f(t)+2f(
1
t
)=
1
t

f(x)+2f(
1
x
)=
1
x
       ②
①×2-②得:3f(x)=2x-
1
x

所以f(x)=
2x
3
-
1
3x
核心考点
试题【已知f(1x)+2f(x)=x(x≠0)(1)求f(1)的值;    (2)求f(x)的表达式.】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
已知f(x)=x|x-a|-2.
(1)当a=0时,求函数y=f(x)+1的零点;
(2)若a>0,求f(x)的单调区间;
(3)若当x∈[0,1]时,恒有f(x)<0,求实数a的取值范围.
题型:解答题难度:一般| 查看答案
已知函数f(x)=lnx,g(x)=
1
2
ax2+bx,a≠0.
(Ⅰ)若b=2,且h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围;
(Ⅱ)设函数f(x)的图象C1与函数g(x)图象C2交于点P、Q,过线段PQ的中点作x轴的垂线分别交C1,C2于点M、N,证明C1在点M处的切线与C2在点N处的切线不平行.
题型:解答题难度:一般| 查看答案
已知函数f(x)=kax-a-x(a>0且a≠1)是奇函数.
(1)求实数k的值.
(2)若f(1)>0,试求不等式f(x2+2x)+f(x-4)>0的解集.
题型:解答题难度:一般| 查看答案
已知函数f(x)=





ax+1-2a,x<0
x2,x≥0
,若对任意x1,x2∈R,x1≠x2,使f(x1)<f(x2)成立,则实数a的取值范围是______.
题型:填空题难度:简单| 查看答案
已知函数f(x)=x2,g(x)=|x-a|.
(1)当a=2时,求不等式f(x)>g(x)的解集;
(2)设a>1,函数h(x)=f(x)g(x),求h(x)在x∈[1,2]上的最小值.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.