当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 已知多项式f(n)=15n5+12n4+13n3-130n.(Ⅰ)求f(-1)及f(2)的值;(Ⅱ)试探求对一切整数n,f(n)是否一定是整数?并证明你的结论....
题目
题型:解答题难度:一般来源:不详
已知多项式f(n)=
1
5
n5+
1
2
n4+
1
3
n3-
1
30
n

(Ⅰ)求f(-1)及f(2)的值;
(Ⅱ)试探求对一切整数n,f(n)是否一定是整数?并证明你的结论.
答案
(Ⅰ)f(-1)=-
1
5
+
1
2
-
1
3
+
1
30
=0

f(2)=
1
5
×25+
1
2
×24+
1
3
×23-
1
30
×2 =17

(Ⅱ)(1)先用数学归纳法证明:对一切正整数n,f(n)是整数.
①当n=1时,f(1)=1,结论成立.
②假设当n=k(k≥1,k∈N)时,结论成立,即f(k)=
1
5
k5+
1
2
k4+
1
3
k3-
1
30
k
是整数,则当n=k+1时,f(k+1)=
1
5
(k+1)5+
1
2
(k+1)4+
1
3
(k+1)3-
1
30
(k+1)
=
C05
k5+
C15
k4+
C25
k3+
C35
k2+
C45
k+
C55
5
+
C04
k4+
C14
k3+
C24
k2+
C14
k+
C44
2
+
C03
k3+
C13
k2+
C23
k+
C33
3
-
1
30
(k+1)

=f(k)+k4+4k3+6k2+4k+1
根据假设f(k)是整数,而k4+4k3+6k2+4k+1显然是整数.
∴f(k+1)是整数,从而当n=k+1时,结论也成立.
由①、②可知对对一切正整数n,f(n)是整数.…(7分)
(2)当n=0时,f(0)=0是整数.…(8分)
(3)当n为负整数时,令n=-m,则m是正整数,由(1)f(m)是整数,
所以f(n)=f(-m)=
1
5
(-m)5+
1
2
(-m)4+
1
3
(-m)3-
1
30
(-m)
=-
1
5
m5+
1
2
m4-
1
3
m3+
1
30
m
=-f(m)+m4是整数.
综上,对一切整数n,f(n)一定是整数.…(10分)
核心考点
试题【已知多项式f(n)=15n5+12n4+13n3-130n.(Ⅰ)求f(-1)及f(2)的值;(Ⅱ)试探求对一切整数n,f(n)是否一定是整数?并证明你的结论.】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
设函数f(x)=|x-a|-ax,其中0<a<1为常数
(1)解不等式f(x)<0;
(2)试推断函数f(x)是否存在最小值?若存在,求出其最小值;若不存在,说明理由.
题型:解答题难度:一般| 查看答案
设函数f(x)=
1-2x
1+x
,又函数g(x)与y=f-1(x+1)的图象关于y=x对称,求g(2)的值.
题型:解答题难度:一般| 查看答案
定义在R上的函数f(x)满足f(x+2)=3f(x),当x∈[0,2]时,f(x)=x2-2x+2,则x∈[-4,-2]时,f(x)的最小值为 ______.
题型:解答题难度:一般| 查看答案
某同学在研究函数f(x)=
x
1+|x|
 (x∈R)
时,分别给出下面几个结论:
①等式f(-x)+f(x)=0对x∈R恒成立;
②若f(x1)≠f(x2),则一定有x1≠x2
③若m>0,方程|f(x)|=m有两个不等实数根;
④函数g(x)=f(x)-x在R上有三个零点.
其中正确结论的序号有______.(请将你认为正确的结论的序号都填上)
题型:填空题难度:简单| 查看答案
设f(x)=x2+bx+c(b、c∈R).
(1)若f(x)在[-2,2]上不单调,求b的取值范围;
(2)若f(x)≥|x|对一切x∈R恒成立,求证:b2+1≤4c;
(3)若对一切x∈R,有f(x+
1
x
)≥0
,且f(
2x2+3
x2+1
)
的最大值为1,求b、c满足的条件.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.