当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 某同学在研究函数f(x)=x1+|x| (x∈R)时,分别给出下面几个结论:①等式f(-x)+f(x)=0对x∈R恒成立;②若f(x1)≠f(x2),则一定有x...
题目
题型:填空题难度:简单来源:上海模拟
某同学在研究函数f(x)=
x
1+|x|
 (x∈R)
时,分别给出下面几个结论:
①等式f(-x)+f(x)=0对x∈R恒成立;
②若f(x1)≠f(x2),则一定有x1≠x2
③若m>0,方程|f(x)|=m有两个不等实数根;
④函数g(x)=f(x)-x在R上有三个零点.
其中正确结论的序号有______.(请将你认为正确的结论的序号都填上)
答案
由题意知
①因为f(-x)=
-x
1+|-x|
=-(
x
1+|x|
)=-f(x)(x∈R)
,所以f(x)=
x
1+|x|
(x∈R)
是奇函数,故f(-x)+f(x)=0对x∈R恒成立,即①正确;
②则当x>0时,f(x)=
1
1+
1
x
反比例函数的单调性可知,f(x)在(0,+∞)上是增函数
再由①知f(x)在(-∞,0)上也是增函数,从而f(x)为单调递增函数,
所以f(x1)≠f(x2),则一定有x1≠x2成立,故命题错误;
③因为f(x)为单调递增函数,所以|f(x)|为偶函数,因为f(x)在(0,+∞)为单调递增函数,所以函数f(x)在(-∞,0)上单调递减,且0≤|f(x)|<1,所以当0<m<1时有两个不相等的实数根,当m≥1时不可能有两个不等的实数根,故本命题错误;
④可以判断g(x)为奇函数,并且g(x)在(-∞,0)上单调递减,即g(x)在(-∞,0)上g(x)>0,在(0,+∞)上单调递减,即g(x)在(0,+∞)上g(x)<0,故函数g(x)=f(x)-x在R上有一个零点.错误
故答案为:①②.
核心考点
试题【某同学在研究函数f(x)=x1+|x| (x∈R)时,分别给出下面几个结论:①等式f(-x)+f(x)=0对x∈R恒成立;②若f(x1)≠f(x2),则一定有x】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
设f(x)=x2+bx+c(b、c∈R).
(1)若f(x)在[-2,2]上不单调,求b的取值范围;
(2)若f(x)≥|x|对一切x∈R恒成立,求证:b2+1≤4c;
(3)若对一切x∈R,有f(x+
1
x
)≥0
,且f(
2x2+3
x2+1
)
的最大值为1,求b、c满足的条件.
题型:解答题难度:一般| 查看答案
设函数f(x)=x+x3,若对于任意的实数a和b,有f(a)+f(b)>0,则一定有(  )
A.a-b>0B.a-b<0C.a+b>0D.a+b<0
题型:单选题难度:简单| 查看答案
函数y=2|x+1|的递减区间是 ______
题型:填空题难度:一般| 查看答案
设偶函数f(x)对任意x∈R,都有f(x)+f(x+1)=4,当x∈[-3,-2]时,f(x)=4x+12,则f(112.5)的值为(  )
A.2B.3C.4D.5
题型:单选题难度:简单| 查看答案
设函数人(x)是定义在(-∞,+∞)上5增函数,如果不等式人(1-ax-x2)<人(2-a)对于任意x∈[0,1]恒成立,求实数a5取值范围.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.