当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 若对任意的实数m,n,都有f(m)+f(n)=f(m+n),且f(1005)=2,则f(1)+f(3)+f(5)+…+f(2009)=______....
题目
题型:填空题难度:一般来源:不详
若对任意的实数m,n,都有f(m)+f(n)=f(m+n),且f(1005)=2,则f(1)+f(3)+f(5)+…+f(2009)=______.
答案
因为f(1005)=2,
所以f(1005)+f(1005)=4
又因为f(m)+f(n)=f(m+n)
所以f(1005)+f(1005)=f(2010)=4
又有
f(1)+f(2009)=f(2010)
f(3)+f(2007)=f(2010)

f(1003)+f(1007)=f(2010)
f(1005)=2
以上式子相加即为原式=4×502+2=2008+2=2010.
故答案为:2010.
核心考点
试题【若对任意的实数m,n,都有f(m)+f(n)=f(m+n),且f(1005)=2,则f(1)+f(3)+f(5)+…+f(2009)=______.】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
函数f(x)=
x+1
x-1
的单调减区间是______.
题型:填空题难度:一般| 查看答案
下列说法中正确的命题代号为 ______.
①f(x)为奇函数,则f(0)=0;
②定义在R上的函数f(x)在区间(-∞,0]上是单调增函数,在区间[0,+∞)上也是单调增函数,则函数f(x)在R上是单调增函数;
③a,b,c都是不等于1的正数且ab≠1,则alogcb=blogca
④定义在R上的函数f(x)若f(2)≠f(-2),则函数f(x)不是偶函数.
题型:填空题难度:简单| 查看答案
已知函数f1(x)=
mx
4x2+16
f2(x)=(
1
2
)|x-m|
,其中m∈R.
(1)若0<m≤2,试判断函数f (x)=f1(x)+f2(x)(x∈[2,+∞))的单调性,并证明你的结论;
(2)设函数g(x)=





f1(x) x≥2 
f2(x) x<2.
若对任意大于等于2的实数x1,总存在唯一的小于2的实数x2,使得g(x1)=g(x2)成立,试确定实数m的取值范围.
题型:解答题难度:一般| 查看答案
已知y=f(x)是定义在[-1,1]上的奇函数,x∈[0,1]时,f(x)=
4x+a
4x+1

(Ⅰ)求x∈[-1,0)时,y=f(x)解析式,并求y=f(x)在x∈[0,1]上的最大值;
(Ⅱ)解不等式f(x)>
1
5
题型:解答题难度:一般| 查看答案
已知函数f(2x+1)=-4x2.则f(x)在单调递增区间是(  )
A.(-∞,0]B.[0,+∞)C.(-∞,1]D.[1,+∞)
题型:单选题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.