当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 函数f(x)(x∈R+)满足下列条件:①f(a)=1(a>1)②f(xm)=mf(x).(1)求证:f(xy)=f(x)+f(y);(2)证明:f(x)在(0,...
题目
题型:解答题难度:一般来源:不详
函数f(x)(x∈R+)满足下列条件:①f(a)=1(a>1)②f(xm)=mf(x).
(1)求证:f(xy)=f(x)+f(y);
(2)证明:f(x)在(0,+∞)上单调递增;
(3)若不等式f(x)+f(3-x)≤2恒成立,求实数a的取值范围.
答案
(1)证明:令x=am,y=an,则f(xy)=f(aman)=f(am+n)=(m+n)f(a)=m+n,
同理,f(x)+f(y)=m+n,∴得证
(2)证明:任设x1,x2∈R+,x1>x2,可令,x1=x2t(t>1),t=aα(α>0)
则f(x1)-f(x2)=f(x2t)-f(x2)=f(x2)+f(t)-f(x2)=f(t)=f(aα)=αf(a)=α>0
即f(x1)>f(x2)∴f(x)在正实数集上单调递增
(3)f(x)+f(3-x)≤2可化成,f(x)+f(3-x)≤2f(a)
即f(x)+f(3-x)≤f(a2),





f[(x)(3-x)]≤f(a2)
0<x<3
,即





x(3-x)≤a2
0<x<3
,而当0<x<3时,[x(3-x)]max=
9
4

依题意,有a2
9
4
,又a>1∴a≥
3
2
核心考点
试题【函数f(x)(x∈R+)满足下列条件:①f(a)=1(a>1)②f(xm)=mf(x).(1)求证:f(xy)=f(x)+f(y);(2)证明:f(x)在(0,】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
定义在[-2,2]上的偶函数f(x)在区间[0,2]上是减函数,且f(1-m)<f(m),则m∈______.
题型:填空题难度:一般| 查看答案
已知f(x)=ax+a-x(a>0且a≠1),
(1)证明函数f ( x )的图象关于y轴对称;
(2)判断f(x)在(0,+∞)上的单调性,并用定义加以证明;
(3)当x∈[1,2]时函数f (x )的最大值为
10
3
,求此时a的值.
题型:解答题难度:一般| 查看答案
设函数f(x)=a-
1
2x+1

(1)判断函数f(x)的单调性,并用定义证明你的结论;
(2)是否存在实数a使函数f(x)为奇函数,写出理由.
题型:解答题难度:一般| 查看答案
已知f(x)是定义在{x|x>0}上的增函数,且f(
x
y
)=f(x)-f(y)

(1)求f(1)的值;
(2)若f(6)=1,解不等式f(38x-108)+f(
1
x
)<2
题型:解答题难度:一般| 查看答案
已知定义域为R的函数f(x)=
a•2x-1
2x+1
是奇函数.
(1)求a的值;
(2)试判断f(x)的单调性,并用定义证明;
(3)若对任意的t∈[-2,2],不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.