当前位置:初中试题 > 数学试题 > 直线与圆位置关系 > 如图所示,在△ABC中,AC=BC=4,∠C=90°,O是AB的中点,⊙O与AC、BC分别相切于点D、E,点F是⊙O与AB的一个交点,连接DF并延长交CB的延长...
题目
题型:广西自治区中考真题难度:来源:
如图所示,在△ABC中,AC=BC=4,∠C=90°,O是AB的中点,⊙O与AC、BC分别相切于点D、E,点F是⊙O与AB的一个交点,连接DF并延长交CB的延长线于点G,则BG的长是(    )。
答案
核心考点
试题【如图所示,在△ABC中,AC=BC=4,∠C=90°,O是AB的中点,⊙O与AC、BC分别相切于点D、E,点F是⊙O与AB的一个交点,连接DF并延长交CB的延长】;主要考察你对直线与圆位置关系等知识点的理解。[详细]
举一反三
如图,AB是⊙O的直径,AC与⊙O相切,切点为A,D为⊙O上一点,AD与OC相交于点E,且∠DAB=∠C。
(1)求证:OC∥BD;
(2)若AO=5,AD=8,求线段CE的长
题型:广东省中考真题难度:| 查看答案
已知AB为⊙O直径,以OA为直径作⊙M。过B作⊙M得切线BC,切点为C,交⊙O于E。
(1)在图中过点B作⊙M作另一条切线BD,切点为点D(用尺规作图,保留作图痕迹,不写作法,不用证明);
(2)证明:∠EAC=∠OCB;
(3)若AB=4,在图2中过O作OP⊥AB交⊙O于P,交⊙M的切线BD于N,求BN的值。
题型:广西自治区中考真题难度:| 查看答案
如图,在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A,D作⊙O,使圆心O在AB上,⊙O与AB交于点E。
(1)求证:直线BD与⊙O相切;
(2)若AD∶AE=4∶5,BC=6,求⊙O的直径。
题型:广东省中考真题难度:| 查看答案
如图,已知AB是⊙O的直径,锐角∠DAB的平分线AC交⊙O于点C,作CD⊥AD,垂足为D,直线CD与AB的延长线交于点E。
(1)求证:直线CD为⊙O的切线;
(2)当AB=2BE,且CE=时,求AD的长。
题型:广西自治区中考真题难度:| 查看答案
如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D,锐角∠DAB的平分线AC交⊙O于点C,作CD⊥AD,垂足为D,直线CD与AB的延长线交于点E。
(1)求证:AC平分∠DAB;
(2)过点O作线段AC的垂线OE,垂足为E(要求:尺规作图,保留作图痕迹,不写作法);
(3)若CD=4,AC=4,求垂线段OE的长。
题型:广西自治区中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.